Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
| from PIL import Image | |
| # Load model and processor | |
| model_name = "riyadifirman/klasifikasiburung" | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| model = AutoModelForImageClassification.from_pretrained(model_name) | |
| # Define image transformations | |
| normalize = Normalize(mean=processor.image_mean, std=processor.image_std) | |
| transform = Compose([ | |
| Resize((224, 224)), | |
| ToTensor(), | |
| normalize, | |
| ]) | |
| def predict(image): | |
| image = Image.fromarray(image) | |
| inputs = transform(image).unsqueeze(0) | |
| outputs = model(inputs) | |
| logits = outputs.logits | |
| predicted_class_idx = logits.argmax(-1).item() | |
| return processor.decode(predicted_class_idx) | |
| # Create Gradio interface | |
| # In newer versions of Gradio, 'inputs' and 'outputs' are directly | |
| # specified within the gr.Interface constructor. | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="numpy"), # Changed from gr.inputs.Image to gr.Image | |
| outputs="text", | |
| title="Bird Classification", | |
| description="Upload an image of a bird to classify it." | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() |