Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomHorizontalFlip, RandomRotation | |
| from PIL import Image | |
| from datasets import load_dataset | |
| import traceback | |
| # Load dataset to get labels | |
| dataset = load_dataset("bentrevett/caltech-ucsd-birds-200-2011") | |
| labels = dataset['train'].features['label'].names | |
| # Load model and processor | |
| model_name = "riyadifirman/klasifikasiburung_new" | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| model = AutoModelForImageClassification.from_pretrained(model_name) | |
| # Define image transformations | |
| normalize = Normalize(mean=processor.image_mean, std=processor.image_std) | |
| transform = Compose([ | |
| Resize((224, 224)), | |
| RandomHorizontalFlip(), | |
| RandomRotation(10), | |
| ToTensor(), | |
| normalize, | |
| ]) | |
| def predict(image): | |
| try: | |
| image = Image.fromarray(image) | |
| inputs = transform(image).unsqueeze(0) | |
| outputs = model(inputs) | |
| logits = outputs.logits | |
| predicted_class_idx = logits.argmax(-1).item() | |
| predicted_class = labels[predicted_class_idx] | |
| return predicted_class | |
| except Exception as e: | |
| # Menampilkan error | |
| print("An error occurred:", e) | |
| print(traceback.format_exc()) # Ini akan print error secara detail | |
| return "An error occurred while processing your request." | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="numpy"), | |
| outputs="text", | |
| title="Bird Classification", | |
| description="Upload an image of a bird to classify it." | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch(share=True) | |