Spaces:
Sleeping
Sleeping
third commit
Browse files- earnings_app.py +1 -20
earnings_app.py
CHANGED
|
@@ -29,7 +29,6 @@ import llama_index
|
|
| 29 |
from llama_index.embeddings import OpenAIEmbedding
|
| 30 |
from llama_index import ServiceContext
|
| 31 |
from llama_index.llms import OpenAI
|
| 32 |
-
from llama_index.ingestion import IngestionPipeline
|
| 33 |
from llama_index.node_parser import TokenTextSplitter
|
| 34 |
|
| 35 |
set_global_handler("wandb", run_args={"project": "final-project-v1"})
|
|
@@ -106,10 +105,6 @@ text_splitter = TokenTextSplitter(
|
|
| 106 |
chunk_size=chunk_size
|
| 107 |
)
|
| 108 |
|
| 109 |
-
node_parser_pipeline = IngestionPipeline(
|
| 110 |
-
transformations=[text_splitter]
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
storage_context = wandb_callback.load_storage_context(
|
| 114 |
artifact_url="llmop/final-project-v1/earnings-index:v0"
|
| 115 |
)
|
|
@@ -138,20 +133,6 @@ def auto_retrieve_fn(
|
|
| 138 |
response = query_engine.query(query)
|
| 139 |
return str(response)
|
| 140 |
|
| 141 |
-
# App
|
| 142 |
-
|
| 143 |
-
# Pydantic is an easy way to define a schema
|
| 144 |
-
class AutoRetrieveModel(BaseModel):
|
| 145 |
-
query: str = Field(..., description="natural language query string")
|
| 146 |
-
filter_key_list: List[str] = Field(
|
| 147 |
-
..., description="List of metadata filter field names"
|
| 148 |
-
)
|
| 149 |
-
filter_value_list: List[str] = Field(
|
| 150 |
-
...,
|
| 151 |
-
description=(
|
| 152 |
-
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
| 153 |
-
)
|
| 154 |
-
)
|
| 155 |
|
| 156 |
# Main function to extract information
|
| 157 |
def extract_information():
|
|
@@ -183,4 +164,4 @@ def extract_information():
|
|
| 183 |
# res = await extract_information_async(text)
|
| 184 |
# print(res)
|
| 185 |
|
| 186 |
-
asyncio.run(main())
|
|
|
|
| 29 |
from llama_index.embeddings import OpenAIEmbedding
|
| 30 |
from llama_index import ServiceContext
|
| 31 |
from llama_index.llms import OpenAI
|
|
|
|
| 32 |
from llama_index.node_parser import TokenTextSplitter
|
| 33 |
|
| 34 |
set_global_handler("wandb", run_args={"project": "final-project-v1"})
|
|
|
|
| 105 |
chunk_size=chunk_size
|
| 106 |
)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
storage_context = wandb_callback.load_storage_context(
|
| 109 |
artifact_url="llmop/final-project-v1/earnings-index:v0"
|
| 110 |
)
|
|
|
|
| 133 |
response = query_engine.query(query)
|
| 134 |
return str(response)
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
# Main function to extract information
|
| 138 |
def extract_information():
|
|
|
|
| 164 |
# res = await extract_information_async(text)
|
| 165 |
# print(res)
|
| 166 |
|
| 167 |
+
# asyncio.run(main())
|