Roar code
Browse files(cherry picked from commit 314d9665c9ac0eed50d9a471dffef9cb1e665e40)
- app.py +136 -0
- assets/logo.png +0 -0
- main.py +13 -0
- models/openai_vs.index +0 -0
- models/openai_vs.pkl +0 -0
- requirements.txt +11 -0
- utils.py +271 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from main import index, run, ingest_files
|
3 |
+
from gtts import gTTS
|
4 |
+
import os, time
|
5 |
+
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
p = pipeline("automatic-speech-recognition")
|
9 |
+
|
10 |
+
"""Use text to call chat method from main.py"""
|
11 |
+
|
12 |
+
models = ["GPT-3.5", "Flan UL2", "Flan T5"]
|
13 |
+
|
14 |
+
name = os.environ.get("name", "Rohan")
|
15 |
+
|
16 |
+
def add_text(history, text, model):
|
17 |
+
print("Question asked: " + text)
|
18 |
+
response = run_model(text, model)
|
19 |
+
history = history + [(text, response)]
|
20 |
+
print(history)
|
21 |
+
return history, ""
|
22 |
+
|
23 |
+
|
24 |
+
def run_model(text, model):
|
25 |
+
start_time = time.time()
|
26 |
+
print("start time:" + str(start_time))
|
27 |
+
response = run(text, model)
|
28 |
+
end_time = time.time()
|
29 |
+
# If response contains string `SOURCES:`, then add a \n before `SOURCES`
|
30 |
+
if "SOURCES:" in response:
|
31 |
+
response = response.replace("SOURCES:", "\nSOURCES:")
|
32 |
+
# response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
|
33 |
+
print(response)
|
34 |
+
print("Time taken: " + str(end_time - start_time))
|
35 |
+
return response
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def get_output(history, audio, model):
|
40 |
+
|
41 |
+
txt = p(audio)["text"]
|
42 |
+
# history.append(( (audio, ) , txt))
|
43 |
+
audio_path = 'response.wav'
|
44 |
+
response = run_model(txt, model)
|
45 |
+
# Remove all text from SOURCES: to the end of the string
|
46 |
+
trimmed_response = response.split("SOURCES:")[0]
|
47 |
+
myobj = gTTS(text=trimmed_response, lang='en', slow=False)
|
48 |
+
myobj.save(audio_path)
|
49 |
+
# split audio by / and keep the last element
|
50 |
+
# audio = audio.split("/")[-1]
|
51 |
+
# audio = audio + ".wav"
|
52 |
+
history.append(( (audio, ) , (audio_path, )))
|
53 |
+
print(history)
|
54 |
+
return history
|
55 |
+
|
56 |
+
def set_model(history, model, first_time=False):
|
57 |
+
print("Model selected: " + model)
|
58 |
+
history = get_first_message(history)
|
59 |
+
index(model, first_time)
|
60 |
+
return history
|
61 |
+
|
62 |
+
|
63 |
+
def get_first_message(history):
|
64 |
+
history = [(None,
|
65 |
+
"Hi! I am " + name + "'s Personal Assistant. Want " + name + " to answer your questions? Just Roar it!")]
|
66 |
+
return history
|
67 |
+
|
68 |
+
def clear_audio(audio):
|
69 |
+
return None
|
70 |
+
|
71 |
+
def bot(history):
|
72 |
+
return history
|
73 |
+
|
74 |
+
def upload_file(files, history, model):
|
75 |
+
file_paths = [file.name for file in files]
|
76 |
+
print("Ingesting files: " + str(file_paths))
|
77 |
+
text = 'Uploaded a file'
|
78 |
+
if ingest_files(file_paths, model):
|
79 |
+
response = 'Files are ingested'
|
80 |
+
else:
|
81 |
+
response = 'Files are not ingested'
|
82 |
+
|
83 |
+
history = history + [(text, response)]
|
84 |
+
return history
|
85 |
+
|
86 |
+
theme = gr.Theme.from_hub("snehilsanyal/scikit-learn")
|
87 |
+
|
88 |
+
theme.block_background_fill = gr.themes.colors.neutral.c200
|
89 |
+
|
90 |
+
|
91 |
+
with gr.Blocks(theme) as demo:
|
92 |
+
# Add image of Roar Logo from local directory
|
93 |
+
gr.HTML('<img src="file/assets/logo.png" style="width: 100px; height: 100px; margin: 0 auto;border:5px solid orange;border-radius: 50%; display: block">')
|
94 |
+
# Title on top in middle of the page
|
95 |
+
gr.HTML("<h1 style='text-align: center;'>Roar - A Personal Assistant</h1>")
|
96 |
+
|
97 |
+
chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot").style(height=500)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
# Create radio button to select model
|
101 |
+
radio = gr.Radio(models, label="Choose a model", value="GPT-3.5", type="value", visible=False)
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=0.6):
|
104 |
+
txt = gr.Textbox(
|
105 |
+
label="Rohan Bot",
|
106 |
+
placeholder="Enter text and press enter, or upload a file", lines=1
|
107 |
+
).style(container=False)
|
108 |
+
|
109 |
+
with gr.Column(scale=0.2):
|
110 |
+
upload = gr.UploadButton(label="Upload a file", type="file", file_count='multiple', file_types=['docx', 'txt', 'pdf', 'html']).style(container=False)
|
111 |
+
|
112 |
+
with gr.Column(scale=0.2):
|
113 |
+
audio = gr.Audio(source="microphone", type="filepath").style(container=False)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
gr.Examples(examples=['What are you an expert of?'], inputs=[txt], label="Examples")
|
117 |
+
|
118 |
+
txt.submit(add_text, [chatbot, txt, radio], [chatbot, txt], postprocess=False).then(
|
119 |
+
bot, chatbot, chatbot
|
120 |
+
)
|
121 |
+
|
122 |
+
radio.change(fn=set_model, inputs=[chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot)
|
123 |
+
|
124 |
+
audio.change(fn=get_output, inputs=[chatbot, audio, radio], outputs=[chatbot, audio], show_progress=True).then(
|
125 |
+
bot, chatbot, chatbot, clear_audio
|
126 |
+
)
|
127 |
+
|
128 |
+
upload.upload(upload_file, inputs=[upload, chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot)
|
129 |
+
|
130 |
+
set_model(chatbot, radio.value, first_time=True)
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
demo.queue()
|
135 |
+
demo.queue(concurrency_count=5)
|
136 |
+
demo.launch(debug=True)
|
assets/logo.png
ADDED
![]() |
main.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import get_search_index, generate_answer, set_model_and_embeddings, ingest
|
2 |
+
|
3 |
+
def index(model, first_time=False):
|
4 |
+
set_model_and_embeddings(model)
|
5 |
+
get_search_index(model, first_time=first_time)
|
6 |
+
return True
|
7 |
+
|
8 |
+
def ingest_files(file_paths, model):
|
9 |
+
return ingest(file_paths, model)
|
10 |
+
|
11 |
+
def run(question, model):
|
12 |
+
index(model)
|
13 |
+
return generate_answer(question)
|
models/openai_vs.index
ADDED
Binary file (43.1 kB). View file
|
|
models/openai_vs.pkl
ADDED
Binary file (49.6 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
openai
|
3 |
+
faiss-cpu==1.7.3
|
4 |
+
unstructured==0.5.8
|
5 |
+
ffmpeg-python
|
6 |
+
transformers
|
7 |
+
gtts
|
8 |
+
torch
|
9 |
+
tiktoken
|
10 |
+
huggingface-hub
|
11 |
+
gradio
|
utils.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import langchain
|
4 |
+
|
5 |
+
import faiss
|
6 |
+
from langchain import HuggingFaceHub
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader, UnstructuredPDFLoader, UnstructuredWordDocumentLoader
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings
|
11 |
+
from langchain.memory import ConversationBufferWindowMemory
|
12 |
+
from langchain.llms.openai import OpenAI
|
13 |
+
from langchain.prompts.chat import (
|
14 |
+
ChatPromptTemplate,
|
15 |
+
HumanMessagePromptTemplate,
|
16 |
+
SystemMessagePromptTemplate,
|
17 |
+
)
|
18 |
+
from langchain.text_splitter import CharacterTextSplitter
|
19 |
+
from langchain.vectorstores.faiss import FAISS
|
20 |
+
from langchain.cache import InMemoryCache
|
21 |
+
import traceback
|
22 |
+
|
23 |
+
|
24 |
+
langchain.llm_cache = InMemoryCache()
|
25 |
+
|
26 |
+
global model_name
|
27 |
+
|
28 |
+
models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5"]
|
29 |
+
|
30 |
+
pickle_file = "_vs.pkl"
|
31 |
+
updated_pickle_file = "_vs_updated.pkl"
|
32 |
+
index_file = "_vs.index"
|
33 |
+
models_folder = "models/"
|
34 |
+
|
35 |
+
llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
|
36 |
+
|
37 |
+
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
|
38 |
+
|
39 |
+
chat_history = []
|
40 |
+
|
41 |
+
memory = ConversationBufferWindowMemory(memory_key="chat_history", k=10)
|
42 |
+
|
43 |
+
vectorstore_index = None
|
44 |
+
|
45 |
+
# get name to be used in prompt from environment variable `name`
|
46 |
+
name = os.environ.get("name", "Rohan")
|
47 |
+
|
48 |
+
system_template = """You are ROAR, {name}'s personal assistant supposed to ANSWER QUESTIONS ON HIS BEHALF.
|
49 |
+
STRICTLY FOLLOW THIS: FOR OPINIONS, PREFERENCES, EXPERIENCES,ALWAYS ANSWER IN FIRST PERSON AS IF YOU ARE {name}. ALWAYS Generate this response with experiences/opinions using {name}'s RESUME available in context/vectorstore.
|
50 |
+
Response should be in professional language and tone, impressive, catchy, and grammatically correct.
|
51 |
+
Use {name}'s resume and your knowledge of his experience and skills to answer questions to the best of your ability.
|
52 |
+
Answer the question as if you are assisting {name} or answering on his behalf.
|
53 |
+
----------------
|
54 |
+
This activity of answering questions on {name}'s behalf will be called Roar.
|
55 |
+
For example: If someone wants to ask you a question, they will say "Roar it" and you will answer the question on {name}'s behalf by generating a response using {name}'s resume and your knowledge of his experience and skills.
|
56 |
+
Add a qwirky and funny line in the end to encourage the user to try more Roars as they are free.
|
57 |
+
----------------
|
58 |
+
{context}
|
59 |
+
"""
|
60 |
+
# append name in system template to be used in prompt
|
61 |
+
system_template = system_template.format(name=name, context="{context}")
|
62 |
+
|
63 |
+
messages = [
|
64 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
65 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
66 |
+
]
|
67 |
+
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
68 |
+
|
69 |
+
|
70 |
+
def set_model_and_embeddings(model):
|
71 |
+
global chat_history
|
72 |
+
set_model(model)
|
73 |
+
# set_embeddings(model)
|
74 |
+
chat_history = []
|
75 |
+
|
76 |
+
|
77 |
+
def set_model(model):
|
78 |
+
global llm
|
79 |
+
print("Setting model to " + str(model))
|
80 |
+
if model == "GPT-3.5":
|
81 |
+
print("Loading GPT-3.5")
|
82 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.5)
|
83 |
+
elif model == "GPT-4":
|
84 |
+
print("Loading GPT-4")
|
85 |
+
llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
|
86 |
+
elif model == "Flan UL2":
|
87 |
+
print("Loading Flan-UL2")
|
88 |
+
llm = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature": 0.1, "max_new_tokens":500})
|
89 |
+
elif model == "Flan T5":
|
90 |
+
print("Loading Flan T5")
|
91 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.1})
|
92 |
+
else:
|
93 |
+
print("Loading GPT-3.5 from else")
|
94 |
+
llm = OpenAI(model_name="text-davinci-002", temperature=0.1)
|
95 |
+
|
96 |
+
|
97 |
+
def set_embeddings(model):
|
98 |
+
global embeddings
|
99 |
+
if model == "GPT-3.5" or model == "GPT-4":
|
100 |
+
print("Loading OpenAI embeddings")
|
101 |
+
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
|
102 |
+
elif model == "Flan UL2" or model == "Flan T5":
|
103 |
+
print("Loading Hugging Face embeddings")
|
104 |
+
embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2")
|
105 |
+
|
106 |
+
|
107 |
+
def get_search_index(model, first_time=False):
|
108 |
+
global vectorstore_index
|
109 |
+
if not first_time:
|
110 |
+
print("Using updated pickle file")
|
111 |
+
file = updated_pickle_file
|
112 |
+
else:
|
113 |
+
print("Using base pickle file")
|
114 |
+
file = pickle_file
|
115 |
+
if os.path.isfile(get_file_path(model, file)) and os.path.isfile(
|
116 |
+
get_file_path(model, index_file)) and os.path.getsize(get_file_path(model, file)) > 0:
|
117 |
+
# Load index from pickle file
|
118 |
+
search_index = load_index(model)
|
119 |
+
else:
|
120 |
+
search_index = create_index(model)
|
121 |
+
|
122 |
+
vectorstore_index = search_index
|
123 |
+
return search_index
|
124 |
+
|
125 |
+
|
126 |
+
def load_index(model):
|
127 |
+
with open(get_file_path(model, pickle_file), "rb") as f:
|
128 |
+
search_index = pickle.load(f)
|
129 |
+
print("Loaded index")
|
130 |
+
return search_index
|
131 |
+
|
132 |
+
|
133 |
+
def create_index(model):
|
134 |
+
sources = fetch_data_for_embeddings()
|
135 |
+
source_chunks = split_docs(sources)
|
136 |
+
search_index = search_index_from_docs(source_chunks)
|
137 |
+
faiss.write_index(search_index.index, get_file_path(model, index_file))
|
138 |
+
# Save index to pickle file
|
139 |
+
with open(get_file_path(model, pickle_file), "wb") as f:
|
140 |
+
pickle.dump(search_index, f)
|
141 |
+
print("Created index")
|
142 |
+
return search_index
|
143 |
+
|
144 |
+
|
145 |
+
def get_file_path(model, file):
|
146 |
+
# If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file
|
147 |
+
if model == "GPT-3.5" or model == "GPT-4":
|
148 |
+
return models_folder + "openai" + file
|
149 |
+
else:
|
150 |
+
return models_folder + "hf" + file
|
151 |
+
|
152 |
+
|
153 |
+
def search_index_from_docs(source_chunks):
|
154 |
+
# print("source chunks: " + str(len(source_chunks)))
|
155 |
+
# print("embeddings: " + str(embeddings))
|
156 |
+
|
157 |
+
search_index = FAISS.from_documents(source_chunks, embeddings)
|
158 |
+
return search_index
|
159 |
+
|
160 |
+
|
161 |
+
def get_html_files():
|
162 |
+
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
|
163 |
+
document_list = loader.load()
|
164 |
+
return document_list
|
165 |
+
|
166 |
+
|
167 |
+
def fetch_data_for_embeddings():
|
168 |
+
document_list = get_word_files()
|
169 |
+
document_list.extend(get_html_files())
|
170 |
+
|
171 |
+
print("document list: " + str(len(document_list)))
|
172 |
+
return document_list
|
173 |
+
|
174 |
+
|
175 |
+
def get_word_files():
|
176 |
+
loader = DirectoryLoader('docs', glob="**/*.docx", loader_cls=UnstructuredWordDocumentLoader, recursive=True)
|
177 |
+
document_list = loader.load()
|
178 |
+
return document_list
|
179 |
+
|
180 |
+
def split_docs(docs):
|
181 |
+
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
|
182 |
+
|
183 |
+
source_chunks = splitter.split_documents(docs)
|
184 |
+
|
185 |
+
print("chunks: " + str(len(source_chunks)))
|
186 |
+
|
187 |
+
return source_chunks
|
188 |
+
|
189 |
+
def load_documents(file_paths):
|
190 |
+
# Check the type of file from the extension and load it accordingly
|
191 |
+
document_list = []
|
192 |
+
for file_path in file_paths:
|
193 |
+
if file_path.endswith(".txt"):
|
194 |
+
loader = TextLoader(file_path)
|
195 |
+
elif file_path.endswith(".docx"):
|
196 |
+
loader = UnstructuredWordDocumentLoader(file_path)
|
197 |
+
elif file_path.endswith(".html"):
|
198 |
+
loader = UnstructuredHTMLLoader(file_path)
|
199 |
+
elif file_path.endswith(".pdf"):
|
200 |
+
loader = UnstructuredPDFLoader(file_path)
|
201 |
+
else:
|
202 |
+
print("Unsupported file type")
|
203 |
+
raise Exception("Unsupported file type")
|
204 |
+
docs = loader.load()
|
205 |
+
document_list.extend(docs)
|
206 |
+
# print("Loaded " + file_path)
|
207 |
+
|
208 |
+
print("Loaded " + str(len(document_list)) + " documents")
|
209 |
+
return document_list
|
210 |
+
|
211 |
+
def add_to_index(docs, index, model):
|
212 |
+
global vectorstore_index
|
213 |
+
index.add_documents(docs)
|
214 |
+
with open(get_file_path(model, updated_pickle_file), "wb") as f:
|
215 |
+
pickle.dump(index, f)
|
216 |
+
vectorstore_index = index
|
217 |
+
print("Vetorstore index updated")
|
218 |
+
return True
|
219 |
+
def ingest(file_paths, model):
|
220 |
+
print("Ingesting files")
|
221 |
+
try:
|
222 |
+
# handle txt, docx, html, pdf
|
223 |
+
docs = load_documents(file_paths)
|
224 |
+
split_docs(docs)
|
225 |
+
add_to_index(docs, vectorstore_index, model)
|
226 |
+
print("Ingestion complete")
|
227 |
+
except Exception as e:
|
228 |
+
traceback.print_exc()
|
229 |
+
return False
|
230 |
+
return True
|
231 |
+
|
232 |
+
|
233 |
+
def get_qa_chain(vectorstore_index):
|
234 |
+
global llm, model_name
|
235 |
+
print(llm)
|
236 |
+
|
237 |
+
# embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
|
238 |
+
# compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
|
239 |
+
retriever = vectorstore_index.as_retriever(search_type="similarity_score_threshold",
|
240 |
+
search_kwargs={"score_threshold": .8})
|
241 |
+
|
242 |
+
chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True,
|
243 |
+
verbose=True, get_chat_history=get_chat_history,
|
244 |
+
combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
|
245 |
+
return chain
|
246 |
+
|
247 |
+
|
248 |
+
def get_chat_history(inputs) -> str:
|
249 |
+
res = []
|
250 |
+
for human, ai in inputs:
|
251 |
+
res.append(f"Human:{human}\nAI:{ai}")
|
252 |
+
return "\n".join(res)
|
253 |
+
|
254 |
+
|
255 |
+
def generate_answer(question) -> str:
|
256 |
+
global chat_history, vectorstore_index
|
257 |
+
chain = get_qa_chain(vectorstore_index)
|
258 |
+
|
259 |
+
result = chain(
|
260 |
+
{"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
|
261 |
+
chat_history = [(question, result["answer"])]
|
262 |
+
sources = []
|
263 |
+
print(result)
|
264 |
+
|
265 |
+
for document in result['source_documents']:
|
266 |
+
# sources.append(document.metadata['url'])
|
267 |
+
sources.append(document.metadata['source'].split('/')[-1].split('.')[0])
|
268 |
+
print(sources)
|
269 |
+
|
270 |
+
source = ',\n'.join(set(sources))
|
271 |
+
return result['answer'] + '\nSOURCES: ' + source
|