import gradio as gr
from main import index, run, ingest_files
from gtts import gTTS
import os, time
from transformers import pipeline
p = pipeline("automatic-speech-recognition", model="openai/whisper-base")
"""Use text to call chat method from main.py"""
models = ["GPT-3.5", "Flan UL2", "Flan T5", "GPT-4"]
name = os.environ.get("name", "Rohan")
def add_text(history, text, model):
print("Question asked: " + text)
response = run_model(text, model)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text, model):
start_time = time.time()
print("start time:" + str(start_time))
response = run(text, model)
end_time = time.time()
# If response contains string `SOURCES:`, then add a \n before `SOURCES`
if "SOURCES:" in response:
response = response.replace("SOURCES:", "\nSOURCES:")
# response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print("Time taken: " + str(end_time - start_time))
return response
def get_output(history, audio, model):
txt = p(audio)["text"]
# history.append(( (audio, ) , txt))
audio_path = 'response.wav'
response = run_model(txt, model)
# Remove all text from SOURCES: to the end of the string
trimmed_response = response.split("SOURCES:")[0]
myobj = gTTS(text=trimmed_response, lang='en', slow=False)
myobj.save(audio_path)
# split audio by / and keep the last element
# audio = audio.split("/")[-1]
# audio = audio + ".wav"
history.append(( (audio, ) , (audio_path, )))
print(history)
return history
def set_model(history, model, first_time=False):
print("Model selected: " + model)
history = get_first_message(history)
index(model, first_time)
return history
def get_first_message(history):
history = [(None,
"Hi! I am " + name + "'s Personal Assistant. Want " + name + " to answer your questions? Just Roar it!")]
return history
def clear_audio(audio):
return None
def bot(history):
return history
def upload_file(files, history, model):
file_paths = [file.name for file in files]
print("Ingesting files: " + str(file_paths))
text = 'Uploaded a file'
if ingest_files(file_paths, model):
response = 'Files are ingested. Roar now!'
else:
response = 'Files are not ingested. Please try again.'
history = history + [(text, response)]
return history
theme = gr.Theme.from_hub("snehilsanyal/scikit-learn")
theme.block_background_fill = gr.themes.colors.neutral.c100
theme.block_border_width = '2px'
theme.block_border_radius = '10px'
with gr.Blocks(theme=theme, title='Roar!') as demo:
# Add image of Roar Logo from local directory
gr.HTML('')
# Title on top in middle of the page
gr.HTML("