Spaces:
Runtime error
Runtime error
File size: 20,024 Bytes
cc93546 4604a12 cc93546 4604a12 cc93546 4604a12 cc93546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import pickle
import langchain
import faiss
from langchain import HuggingFaceHub, PromptTemplate
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
StringPromptTemplate
)
from langchain.output_parsers import PydanticOutputParser
from langchain.tools.json.tool import JsonSpec
from typing import List, Union, Callable
from langchain.schema import AgentAction, AgentFinish
import re
from langchain.text_splitter import CharacterTextSplitter
from custom_faiss import MyFAISS
from langchain.cache import InMemoryCache
from langchain.chat_models import ChatGooglePalm
from langchain.document_loaders import JSONLoader
from langchain.agents import initialize_agent, Tool, AgentType
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser, BaseMultiActionAgent
from langchain.tools import StructuredTool
from langchain.chains import create_tagging_chain
from typing import List, Tuple, Any, Union
from langchain.schema import AgentAction, AgentFinish
from pydantic import BaseModel, Field
from typing import Optional
class ToolArgsSchema(BaseModel):
student_name: Optional[str] = Field(description="The name of the student")
question: str = Field(description="The question being asked")
question_type: str = Field(description="The type of question being asked")
interest: Optional[str] = Field(description="The interest of the student")
class Config:
schema_extra = {
"required": ["question", "question_type"]
}
langchain.llm_cache = InMemoryCache()
model_name = "GPT-4"
pickle_file = "_vs.pkl"
index_file = "_vs.index"
models_folder = "models/"
os.environ["LANGCHAIN_TRACING"] = "true"
discussions_file_path = "discussion_entries.json"
llm = OpenAI(model_name="gpt-3.5-turbo-16k", temperature=0, verbose=True)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
chat_history = []
memory = ConversationBufferWindowMemory(memory_key="chat_history", k=10)
vectorstore_index = None
agent_prompt = """
I am the LLM AI canvas discussion grading assistant.
I can answer two types of questions: grade-based questions and interest-based questions.
Grade-based questions are about the grades of a certain student or a group of students based on the rubric below for the canvas discussion on the topic 8 nouns. ALWAYS return total score when it is grading based question.
Interest-based questions are about the interests or skills of a certain student or a group of students based on their discussion posts.
You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about type of question it is
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: {input}
{agent_scratchpad}
"""
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
############## NEW ######################
# The list of tools available
tools_getter: Callable
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
############## NEW ######################
tools = self.tools_getter(kwargs["input"])
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
)
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
print("llm_output")
print(llm_output)
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
system_template = """
I am the LLM AI canvas discussion grading assistant.
I can answer two types of questions: grade-based questions and interest-based questions.
Grade-based questions are about the grades of a certain student or a group of students based on the rubric below for the canvas discussion on the topic 8 nouns.
Interest-based questions are about the interests or skills of a certain student or a group of students based on their discussion posts.
To grade student discussions, I will follow the rubric below.
Student Post
3 points: Post includes 8 nouns and text describing how these nouns relate to the student.
2 points: Student's post includes 8 nouns but does not offer how those nouns relate to the student.
1 point: Student's post has significant missing details.
0 points: The student does not provide an initial post, or otherwise does not follow assignment instructions.
Response to Others
3 points: Student responds to at least 3 other student discussion threads AND responds to questions asked of them. Student posts insightful comments that prompt on target discussion. These posts also avoid throw away comments such as I agree, Me too, Good idea.
2 points: Student was notably lacking in one criterion.
1 point: Student was notably lacking in two criteria.
0 points: The student does not interact in the threads of other students.
I will be able to identify each student by name, and I will be able to share their likings, interests, and other characteristics. I will also be able to filter out students based on their interests.
I will not deviate from the grading scheme. I will grade each discussion entry and reply carefully, and I will share the grades of all individuals by name on the basis of the rubric. I will ALWAYS return total score when it is grading based question.
The discussions and their replies are in following format:
Student Post: Student Name
Reply to: Another Student Discussion ID
Your answer to grade based questions should be in following format:
Student Post: X points
Response to Others: X points
Total: X points
Following are the relevant discussions to grade or answer the interest based questions
----------------
Discussions:
{context}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
def set_model_and_embeddings():
global chat_history
# set_model(model)
# set_embeddings(model)
chat_history = []
def set_embeddings(model):
global embeddings
if model == "GPT-3.5" or model == "GPT-4":
print("Loading OpenAI embeddings")
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
elif model == "Flan UL2" or model == "Flan T5":
print("Loading Hugging Face embeddings")
embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2")
def get_search_index():
global vectorstore_index, model_name
if os.path.isfile(get_file_path(model_name, pickle_file)) and os.path.isfile(
get_file_path(model_name, index_file)) and os.path.getsize(get_file_path(model_name, pickle_file)) > 0:
# Load index from pickle file
with open(get_file_path(model_name, pickle_file), "rb") as f:
# search_index = Chroma(persist_directory=models_folder, embedding_function=embeddings)
search_index = pickle.load(f)
print("Loaded index")
else:
search_index = create_index(model_name)
print("Created index")
vectorstore_index = search_index
return search_index
def create_index(model):
source_chunks = create_chunk_documents()
search_index = search_index_from_docs(source_chunks)
# search_index.persist()
faiss.write_index(search_index.index, get_file_path(model, index_file))
# Save index to pickle file
with open(get_file_path(model, pickle_file), "wb") as f:
pickle.dump(search_index, f)
return search_index
def get_file_path(model, file):
# If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file
if model == "GPT-3.5" or model == "GPT-4":
return models_folder + "openai" + file
else:
return models_folder + "hf" + file
def search_index_from_docs(source_chunks):
# print("source chunks: " + str(len(source_chunks)))
# print("embeddings: " + str(embeddings))
search_index = MyFAISS.from_documents(source_chunks, embeddings)
return search_index
def get_html_files():
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
document_list = loader.load()
for document in document_list:
document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
return document_list
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["name"] = record.get("name")
return metadata
def get_json_file():
global discussions_file_path
loader = JSONLoader(
file_path=discussions_file_path,
jq_schema='.[]', metadata_func=metadata_func, content_key="message")
return loader.load()
def fetch_data_for_embeddings():
# document_list = get_text_files()
document_list = get_html_files()
# document_list = get_json_file()
print("document list: " + str(len(document_list)))
return document_list
def get_text_files():
loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
document_list = loader.load()
return document_list
def create_chunk_documents():
sources = fetch_data_for_embeddings()
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
source_chunks = splitter.split_documents(sources)
print("chunks: " + str(len(source_chunks)))
return sources
def get_qa_chain(vectorstore_index, question, metadata):
global llm, model_name
print(llm)
filter_dict = {"name": metadata.student_name}
# embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
# compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
retriever = get_retriever(filter_dict, vectorstore_index, metadata)
print(retriever.get_relevant_documents(question))
chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True,
verbose=True, get_chat_history=get_chat_history,
combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
return chain
def get_retriever(filter_dict, vectorstore_index, metadata):
if metadata.question_type == "grade-based":
retriever = vectorstore_index.as_retriever(search_type='mmr',
search_kwargs={'lambda_mult': 1, 'fetch_k': 20, 'k': 10,
'filter': filter_dict})
else:
retriever = vectorstore_index.as_retriever(search_type='mmr',
search_kwargs={'lambda_mult': 1, 'fetch_k': 20, 'k': 10})
return retriever
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
def generate_answer(question, metadata: ToolArgsSchema) -> str:
# print("filter: " + filter)
global chat_history, vectorstore_index
chain = get_qa_chain(vectorstore_index, question, metadata)
result = chain(
{"question": question, "chat_history": chat_history})
chat_history.extend([(question, result["answer"])])
sources = []
print(result)
for document in result['source_documents']:
source = document.metadata['source']
sources.append(source.split('/')[-1].split('.')[0])
print(sources)
source = ',\n'.join(set(sources))
# return result['answer'] + '\nSOURCES: ' + source
return result['answer']
def get_question_type(question):
parser = PydanticOutputParser(pydantic_object=ToolArgsSchema)
prompt_template = """I can answer two types of questions: grade-based questions and interest-based questions.
Grade-based questions are about the grades of a certain student or a group of students based on the rubric below for the canvas discussion on the topic 8 nouns.
Interest-based questions are about the interests or skills of a certain student or a group of students based on their discussion posts.
Question: {question}
Find following information about the question asked. Return Optional empty if the information is not available.:
Format instructions: {format_instructions}"""
llm = OpenAI(temperature=0)
prompt = PromptTemplate(template=prompt_template, input_variables=["question"], output_parser=parser, partial_variables={"format_instructions": parser.get_format_instructions()})
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
)
output = llm_chain.run(question)
output = parser.parse(output)
output = generate_answer(question, output)
return output
# class FakeAgent(BaseMultiActionAgent):
# """Fake Custom Agent."""
#
# @property
# def input_keys(self):
# return ["input"]
#
# def plan(
# self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
# ) -> Union[List[AgentAction], AgentFinish]:
# print("input keys")
# print(self.input_keys)
# print("intermediate steps")
# print(intermediate_steps)
# print("kwargs")
# print(kwargs)
#
# """Given input, decided what to do.
#
# Args:
# intermediate_steps: Steps the LLM has taken to date,
# along with observations
# **kwargs: User inputs.
#
# Returns:
# Action specifying what tool to use.
# """
# if len(intermediate_steps) == 0:
# first_action = AgentAction(tool="question type", tool_input=kwargs["input"], log="")
# print("first action")
# print(first_action)
# second_action = AgentAction(tool="Grade",tool_input=kwargs["input"], log="")
# print("second action")
# print(second_action)
# return [
# first_action,
# second_action,
# ]
# else:
# return AgentFinish(return_values={"output": "bar"}, log="")
#
# async def aplan(
# self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
# ) -> Union[List[AgentAction], AgentFinish]:
# """Given input, decided what to do.
#
# Args:
# intermediate_steps: Steps the LLM has taken to date,
# along with observations
# **kwargs: User inputs.
#
# Returns:
# Action specifying what tool to use.
# """
# if len(intermediate_steps) == 0:
# return [
# AgentAction(tool="question type", tool_input=kwargs["input"], log=""),
# AgentAction(tool="Grade",
# tool_input={
# "student_name": kwargs["student_name"],
# "question": kwargs["question"],
# "question_type": kwargs["question_type"],
# "interest": kwargs["interest"]
# }, log=""),
# ]
# else:
# return AgentFinish(return_values={"output": "bar"}, log="")
#
#
# schema = {
# "properties": {
# "student_name" : {"type": "string", "description": "The name of the student"},
# "question": {"type": "string", "description": "The question being asked"},
# "question type" : {"type": "string",
# "enum": ["student grades", "student specific", "interest specific"],
# "description": "The type of question being asked"},
# "interest" : {"type": "string", "description": "The interest of the student"},
# },
# "required": ["question", "question type"]
# }
# def get_tagging_chain(question)-> str:
# global schema
# chain = create_tagging_chain(schema, llm)
# first_answer = chain.run(question)
# print("first answer:")
# print(first_answer)
# return first_answer
#
#
# def get_grading_agent():
#
# tools = [
# Tool(
# name="question type",
# func=get_tagging_chain,
# description="Useful when you need to understand the type of the input."
# ),
# StructuredTool(
# name="Grade",
# func=generate_answer,
# description="Useful when you need to answer questions about students, grades, interests, etc from the context of canvas discussion posts. If the question is student specific, student name is required.",
# args_schema=ToolArgsSchema
# )
# ]
# # agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
#
# agent = FakeAgent(output_parser=CustomOutputParser())
# # prompt = CustomPromptTemplate(template=agent_prompt, tools=tools, input_variables=["input", "intermediate_steps"])
# # output_parser = CustomOutputParser()
# # tool_names = [tool.name for tool in tools]
# # llm_chain = LLMChain(llm=llm, prompt=prompt)
# # agent = LLMSingleActionAgent(
# # llm_chain=llm_chain,
# # output_parser=output_parser,
# # stop=["\nObservation:"],
# # allowed_tools=tool_names,
# # )
# agent_executor = AgentExecutor.from_agent_and_tools(
# agent=agent, tools=tools, verbose=True
# )
#
# # return initialize_agent(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)
# return agent_executor
#
#
#
# def grade_answer(question) -> str:
# global chat_history, vectorstore_index
# agent = get_grading_agent()
# return agent.run(question) |