Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,72 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from TTS.api import TTS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
captioner = pipeline(model="microsoft/git-base")
|
| 6 |
-
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
| 7 |
|
| 8 |
|
| 9 |
def predict(image):
|
| 10 |
text = captioner(image)[0]["generated_text"]
|
| 11 |
|
| 12 |
-
audio_output = "output.wav"
|
| 13 |
-
tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
|
|
|
| 14 |
|
| 15 |
-
return text,
|
| 16 |
|
| 17 |
demo = gr.Interface(
|
| 18 |
fn=predict,
|
| 19 |
inputs=gr.Image(type="pil"),
|
| 20 |
-
outputs=['text', gr.Audio()]
|
| 21 |
)
|
| 22 |
|
| 23 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
# from TTS.api import TTS
|
| 4 |
+
|
| 5 |
+
import librosa
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
checkpoint = "microsoft/speecht5_tts"
|
| 13 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
| 14 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
| 15 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 16 |
+
|
| 17 |
+
def tts(text):
|
| 18 |
+
if len(text.strip()) == 0:
|
| 19 |
+
return (16000, np.zeros(0).astype(np.int16))
|
| 20 |
+
|
| 21 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 22 |
+
|
| 23 |
+
# limit input length
|
| 24 |
+
input_ids = inputs["input_ids"]
|
| 25 |
+
input_ids = input_ids[..., :model.config.max_text_positions]
|
| 26 |
+
|
| 27 |
+
# if speaker == "Surprise Me!":
|
| 28 |
+
# # load one of the provided speaker embeddings at random
|
| 29 |
+
# idx = np.random.randint(len(speaker_embeddings))
|
| 30 |
+
# key = list(speaker_embeddings.keys())[idx]
|
| 31 |
+
# speaker_embedding = np.load(speaker_embeddings[key])
|
| 32 |
+
|
| 33 |
+
# # randomly shuffle the elements
|
| 34 |
+
# np.random.shuffle(speaker_embedding)
|
| 35 |
+
|
| 36 |
+
# # randomly flip half the values
|
| 37 |
+
# x = (np.random.rand(512) >= 0.5) * 1.0
|
| 38 |
+
# x[x == 0] = -1.0
|
| 39 |
+
# speaker_embedding *= x
|
| 40 |
+
|
| 41 |
+
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
|
| 42 |
+
# else:
|
| 43 |
+
speaker_embedding = np.load("cmu_us_bdl_arctic-wav-arctic_a0009.npy")
|
| 44 |
+
|
| 45 |
+
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
| 46 |
+
|
| 47 |
+
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
|
| 48 |
+
|
| 49 |
+
speech = (speech.numpy() * 32767).astype(np.int16)
|
| 50 |
+
return (16000, speech)
|
| 51 |
+
|
| 52 |
|
| 53 |
captioner = pipeline(model="microsoft/git-base")
|
| 54 |
+
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
| 55 |
|
| 56 |
|
| 57 |
def predict(image):
|
| 58 |
text = captioner(image)[0]["generated_text"]
|
| 59 |
|
| 60 |
+
# audio_output = "output.wav"
|
| 61 |
+
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
| 62 |
+
audio = tts(text)
|
| 63 |
|
| 64 |
+
return text, audio
|
| 65 |
|
| 66 |
demo = gr.Interface(
|
| 67 |
fn=predict,
|
| 68 |
inputs=gr.Image(type="pil"),
|
| 69 |
+
outputs=['text', gr.Audio(type="numpy")]
|
| 70 |
)
|
| 71 |
|
| 72 |
demo.launch()
|