Spaces:
Running
Running
File size: 15,474 Bytes
c64fb9f 69d0bde c64fb9f b7dd466 eadc600 01f7c83 c64fb9f ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 300bdba ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 ba8ef2d ab0ee40 69d0bde ba8ef2d 69d0bde c64fb9f 69d0bde c64fb9f ab0ee40 c64fb9f ab0ee40 c64fb9f ab0ee40 c64fb9f 69d0bde c64fb9f 69d0bde c64fb9f ab0ee40 69d0bde c64fb9f 69d0bde 300bdba 69d0bde c64fb9f a531efa c64fb9f 69d0bde c64fb9f 69d0bde c64fb9f 69d0bde c64fb9f 69d0bde c64fb9f 69d0bde ab0ee40 c64fb9f 69d0bde c64fb9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import os
import gradio as gr
import torch
import base64
import requests
from io import BytesIO
from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
from API_LLaVA.hook import hook_logger as llava_hook_logger
from API_LLaVA.main import blend_mask as llava_blend_mask
from API_CLIP.main import get_model as clip_get_model, gen_mask as clip_gen_mask, blend_mask as clip_blend_mask
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MARKDOWN = """
<div align='center'>
<b style="font-size: 2em;">API: Attention Prompting on Image for Large Vision-Language Models</b>
<br>
<br>
<br>
[<a href="https://arxiv.org/abs/2409.17143"> arXiv paper </a>]
[<a href="https://yu-rp.github.io/api-prompting/"> project page </a>]
[<a href="https://pypi.org/project/apiprompting/"> python package </a>]
[<a href="https://github.com/yu-rp/apiprompting"> code </a>]
</div>
"""
def init_clip_examples():
return gr.Examples(
[
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_1_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_1_masked.webp",
"What fruit is in the left part of the fridge?",
"-",
"fruit",
50,
5,
"BICUBIC",
0,
"In the left part of the fridge, there are strawberries and blueberries visible. The strawberries are in a clear plastic container, and the blueberries are in a similar container below the strawberries.",
"In the left part of the fridge, there are strawberries visible in a clear plastic container."
],
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/example_2_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_2_masked.webp",
"On the right desk, what is to the left of the laptop?",
"-",
"laptop",
20,
9,
"BICUBIC",
200,
"To the left of the laptop on the right desk, there is a small potted plant.",
"To the left of the laptop on the right desk, there is a desk lamp."
],
],
[
image_input,
image_output,
text_query,
text_pre_answer,
text_highlight_text,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
text_original_image_response,
text_API_image_response
],
label = "Examples for CLIP_Based API"
)
def init_llava_examples():
return gr.Examples(
[
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_1_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_1_masked.webp",
"Which direction is the red bird facing in the image?",
" The red bird is facing away from the camera.</s>",
"red bird",
50,
5,
"BICUBIC",
0,
"The red bird in the image is facing to the right.",
"The red bird on the right is facing to the left in the image."
],
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/example_2_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_2_masked.webp",
"On the right desk, what is to the left of the laptop?",
" On the right desk, there is a lamp to the left of the laptop.</s>",
" On the right desk, there is a lamp to the left of the laptop.</s>",
50,
7,
"BICUBIC",
100,
"To the left of the laptop on the right desk, there is a small potted plant.",
"To the left of the laptop on the right desk, there is a desk lamp."
],
],
[
image_input,
image_output,
text_query,
text_pre_answer,
text_highlight_text,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
text_original_image_response,
text_API_image_response
],
label = "Examples for LLaVA_Based API"
)
def get_base64_images(image):
image = image.convert('RGB')
buffer = BytesIO()
image.save(buffer, format='JPEG')
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
return image_base64
def vqa(image, question, api_key):
base64_image = get_base64_images(image)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4-turbo-2024-04-09",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail":"low"
}
}
]
}
],
"max_tokens": 300,
"temperature": 0.0,
"top_p": 0.0,
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
return response.json()["choices"][0]["message"]["content"]
def compare(input_image, output_image, query, api_key):
original_response = vqa(input_image, query, api_key)
api_response = vqa(output_image, query, api_key)
return original_response, api_response
def init_clip():
clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(
model_name = "ViT-L-14-336" if torch.cuda.is_available() else "ViT-L-14",
layer_index = 22, device= DEVICE)
return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}
def init_llava():
llava_tokenizer, llava_model, llava_image_processor, llava_context_len, llava_model_name = llava_get_model("llava-v1.5-13b", device= DEVICE)
llava_hl = llava_hook_logger(llava_model, DEVICE, layer_index = 20)
return {"llava_tokenizer": llava_tokenizer, "llava_model": llava_model, "llava_image_processor": llava_image_processor, "llava_context_len": llava_context_len, "llava_model_name": llava_model_name, "llava_hl": llava_hl}
def change_api_method(api_method):
new_text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
value = "",
lines=4,
interactive=False,
type="text")
new_image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
if api_method == "CLIP_Based API":
model_dict = init_clip()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
# new_examples = init_clip_examples()
elif api_method == "LLaVA_Based API":
model_dict = init_llava()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=True)
# new_examples = init_llava_examples()
else:
raise NotImplementedError
return model_dict, {}, new_generate_llava_response_button, new_text_pre_answer, new_image_output#, new_examples
def clear_cache(cache_dict):
return {}
def clear_mask_cache(cache_dict):
if "llava_mask" in cache_dict.keys():
del cache_dict["llava_mask"]
if "clip_mask" in cache_dict.keys():
del cache_dict["clip_mask"]
return cache_dict
def llava_pre_answer(image, query, cache_dict, model_dict):
pre_answer, cache_dict_update = llava_get_preanswer(
model_dict["llava_model"],
model_dict["llava_model_name"],
model_dict["llava_hl"],
model_dict["llava_tokenizer"],
model_dict["llava_image_processor"],
model_dict["llava_context_len"],
query, image)
cache_dict.update(cache_dict_update)
return pre_answer, cache_dict
def generate_mask(
image,
query,
pre_answer,
highlight_text,
api_method,
enhance_coe,
kernel_size,
interpolate_method_name,
mask_grayscale,
cache_dict,
model_dict):
if api_method == "LLaVA_Based API":
assert highlight_text.strip() in pre_answer
if "llava_mask" in cache_dict.keys() and cache_dict["llava_mask"] is not None:
pass
else:
cache_dict["llava_mask"] = llava_from_preanswer_to_mask(highlight_text, pre_answer, cache_dict)
masked_image = llava_blend_mask(image, cache_dict["llava_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
elif api_method == "CLIP_Based API":
# assert highlight_text in query
if "clip_mask" in cache_dict.keys() and cache_dict["clip_mask"] is not None:
pass
else:
cache_dict["clip_mask"] = clip_gen_mask(
model_dict["clip_model"],
model_dict["clip_prs"],
model_dict["clip_preprocess"],
DEVICE,
model_dict["clip_tokenizer"],
[image],
[highlight_text if highlight_text.strip() != "" else query])
masked_image = clip_blend_mask(image, *cache_dict["clip_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
else:
raise NotImplementedError
return masked_image, cache_dict
image_input = gr.Image(
label="Input Image",
type="pil",
interactive=True,
height=512
)
image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
text_query = gr.Textbox(
label="Query",
placeholder="Enter a query about the image",
lines=2,
type="text")
text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
lines=2,
interactive=False,
type="text")
text_highlight_text = gr.Textbox(
label = "Hint Text",
info = "The text based on which the mask will be generated. For LLaVA-Based API, it should be a substring of the pre-answer.",
placeholder="Enter the hint text",
lines=1,
type="text")
text_api_token = gr.Textbox(
label = "OpenAI API Token",
placeholder="Input your OpenAI API token",
lines=1,
type="password")
text_original_image_response = gr.Textbox(
label="GPT Response (Original Image)",
placeholder="",
lines=2,
interactive=False,
type="text")
text_API_image_response = gr.Textbox(
label="GPT Response (API-maksed Image)",
placeholder="",
lines=2,
interactive=False,
type="text")
radio_api_method = gr.Radio(
["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"],
interactive=True,
value = "CLIP_Based API",
label="Type of API")
slider_mask_grayscale = gr.Slider(
minimum=0,
maximum=255,
step = 0.5,
value=100,
interactive=True,
info = "0: black mask, 255: white mask.",
label="Grayscale")
slider_enhance_coe = gr.Slider(
minimum=1,
maximum=50,
step = 1,
value=1,
interactive=True,
info = "The larger contrast, the greater the contrast between the bright and dark areas of the mask.",
label="Contrast")
slider_kernel_size = gr.Slider(
minimum=1,
maximum=9,
step = 2,
value=1,
interactive=True,
info = "The larger smoothness, the smoother the mask appears, reducing the rectangular shapes.",
label="Smoothness")
radio_interpolate_method_name = gr.Radio(
["BICUBIC", "BILINEAR","BOX","LANCZOS", "NEAREST"],
value = "BICUBIC",
interactive=True,
label="Interpolation Method",
info="The interpolation method used during mask resizing.")
generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
generate_mask_button = gr.Button("API Go!")
ask_gpt_button = gr.Button("GPT Go!")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
state_cache = gr.State({})
state_model = gr.State(init_clip())
with gr.Row():
image_input.render()
image_output.render()
with gr.Accordion("Query and API Processing"):
with gr.Row():
radio_api_method.render()
with gr.Row(equal_height=True):
with gr.Column():
text_query.render()
generate_llava_response_button.render()
text_pre_answer.render()
text_highlight_text.render()
with gr.Column():
slider_enhance_coe.render()
slider_kernel_size.render()
radio_interpolate_method_name.render()
slider_mask_grayscale.render()
with gr.Row():
generate_mask_button.render()
with gr.Accordion("GPT Response"):
text_api_token.render()
ask_gpt_button.render()
with gr.Row():
text_original_image_response.render()
text_API_image_response.render()
with gr.Accordion("Examples"):
clip_examples = init_clip_examples()
llava_examples = init_llava_examples()
radio_api_method.change(
fn=change_api_method,
inputs = [radio_api_method],
outputs=[state_model, state_cache, generate_llava_response_button, text_pre_answer, image_output]
)
image_input.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_query.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_highlight_text.change(
fn=clear_mask_cache,
inputs = state_cache,
outputs=state_cache
)
generate_llava_response_button.click(
fn=llava_pre_answer,
inputs=[image_input, text_query, state_cache, state_model],
outputs=[text_pre_answer, state_cache]
)
generate_mask_button.click(
fn=generate_mask,
inputs=[
image_input,
text_query,
text_pre_answer,
text_highlight_text,
radio_api_method,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
state_cache,
state_model
],
outputs=[image_output, state_cache]
)
ask_gpt_button.click(
fn=compare,
inputs=[image_input, image_output, text_query, text_api_token],
outputs=[text_original_image_response, text_API_image_response]
)
demo.queue(max_size = 1).launch(show_error=True) |