import argparse import torch from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, ) from llava.transformers.generation.stopping_criteria import MaxNewTokensCriteria from PIL import Image import requests from PIL import Image from io import BytesIO import re def image_parser(args): out = args.image_file.split(args.sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out def get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, query, image): sep = "," temperature = 0 top_p = None num_beams = 1 max_new_tokens = 1024 conv_mode = None disable_torch_init() tokenizer, model, image_processor, context_len = tokenizer, model, image_processor, context_len hl = hl hl.reinit() qs = query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs if "llama-2" in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if conv_mode is not None and conv_mode != conv_mode: print( "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( conv_mode, conv_mode, conv_mode ) ) else: conv_mode = conv_mode conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() images = [image] images = [image.convert('RGB') if image.mode != 'RGB' else image for image in images] images_tensor = process_images( images, image_processor, model.config ).to(model.device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) .to(model.device) ) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = [ KeywordsStoppingCriteria(keywords, tokenizer, input_ids), MaxNewTokensCriteria(input_ids.shape[1], max_new_tokens) ] with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, do_sample=True if temperature > 0 else False, temperature=temperature, top_p=top_p, num_beams=num_beams, # max_new_tokens=max_new_tokens, use_cache=True, stopping_criteria=stopping_criteria, ) attention_output = hl.finalize() attention_output = attention_output.view(attention_output.shape[0],24,24) attention_output = attention_output.detach() input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print( f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" ) # outputs = tokenizer.batch_decode( # output_ids[:, input_token_len:].cpu(), skip_special_tokens=True # )[0] # outputs = outputs.strip() # if outputs.endswith(stop_str): # outputs = outputs[: -len(stop_str)] # outputs = outputs.strip() output = tokenizer.decode(output_ids[:, input_token_len:].cpu()[0]) token_mapping = get_token_mapping(tokenizer, output, output_ids[:, input_token_len:].cpu()[0]) return output, {"llava_attentions":attention_output.detach(), "llava_token_mapping":token_mapping} def clean_text(text): cleaned_text = re.sub(r'^[^a-zA-Z0-9]+|[^a-zA-Z0-9]+$', '', text) return cleaned_text def get_token_mapping(tokenizer, outputs, output_ids): tokens = tokenizer.tokenize(outputs)[1:] assert len(tokens) == len(output_ids) current_position = 0 offsets = [] for token in tokens: cleaned_token = clean_text(token) try: token_start = outputs.find(cleaned_token, current_position) except: print(outputs, cleaned_token) continue token_end = token_start + len(cleaned_token) offsets.append((token_start, token_end)) current_position = token_end return offsets def from_preanswer_to_mask(highlight_text, query, cache_dict): if highlight_text.strip() == query.strip() or highlight_text.strip() == "": token_start_index = 0 token_end_index = len(cache_dict["llava_token_mapping"]) - 1 else: text_start_index = query.find(highlight_text) text_end_index = text_start_index + len(highlight_text) for token_index, (token_text_mapping_st, token_text_mapping_end) in enumerate(cache_dict["llava_token_mapping"]): if token_text_mapping_st <= text_start_index: token_start_index = token_index if token_text_mapping_end >= text_end_index: token_end_index = token_index break attentions = cache_dict["llava_attentions"] selected_attentions = attentions[token_start_index:token_end_index+1] mask = selected_attentions.mean(dim=0) return mask def get_model(model_path = "llava-v1.5-7b", device = "cuda:0"): model_path = f"liuhaotian/{model_path}" model_path = model_path model_base = None model_name = get_model_name_from_path(model_path) tokenizer, model, image_processor, context_len = load_pretrained_model( model_path=model_path, model_base=model_base, model_name=model_name, device= device, # load_4bit = True, ) return tokenizer, model, image_processor, context_len, model_name if __name__ == "__main__": prompt = "What are the things I should be cautious about when I visit here?" image_file = "https://llava-vl.github.io/static/images/view.jpg" image = Image.open(BytesIO(requests.get(image_file).content)).convert("RGB") tokenizer, model, image_processor, context_len, model_name = get_model() from .hook import hook_logger hl = hook_logger(model, model.device, layer_index = 20) output, cache_dict = get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, prompt, image) mask = from_preanswer_to_mask(output[10:20], output, cache_dict)