import gradio as gr | |
import spaces | |
import torch | |
from torch.cuda.amp import autocast | |
import subprocess | |
from huggingface_hub import InferenceClient | |
import os | |
import psutil | |
import json | |
import subprocess | |
from threading import Thread | |
import torch | |
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch | |
from accelerate import Accelerator | |
subprocess.run( | |
"pip install psutil", | |
shell=True, | |
) | |
import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization | |
from datetime import datetime | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# pip install 'git+https://github.com/huggingface/transformers.git' | |
token=os.getenv('token') | |
print('token = ',token) | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import transformers | |
# model_id = "mistralai/Mistral-7B-v0.3" | |
# model_id = "microsoft/Phi-3-medium-4k-instruct" | |
# # model_id = "microsoft/phi-4" | |
# # model_id = "Qwen/Qwen2-7B-Instruct" | |
# tokenizer = AutoTokenizer.from_pretrained( | |
# # model_id | |
# model_id, | |
# # use_fast=False | |
# token= token, | |
# trust_remote_code=True) | |
# accelerator = Accelerator() | |
# model = AutoModelForCausalLM.from_pretrained(model_id, token= token, | |
# # torch_dtype= torch.uint8, | |
# torch_dtype=torch.bfloat16, | |
# # load_in_8bit=True, | |
# # # # torch_dtype=torch.fl, | |
# attn_implementation="flash_attention_2", | |
# low_cpu_mem_usage=True, | |
# trust_remote_code=True, | |
# device_map='cuda', | |
# # device_map=accelerator.device_map, | |
# ) | |
# # | |
# model = accelerator.prepare(model) | |
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
# pipe = pipeline( | |
# "text-generation", | |
# model=model, | |
# tokenizer=tokenizer, | |
# ) | |
# pipeline = transformers.pipeline( | |
# "text-generation", | |
# model="microsoft/phi-4", | |
# model_kwargs={"torch_dtype": "auto"}, | |
# device_map="auto", | |
# ) | |
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" }) | |
# Load the model with the inferred device map | |
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"]) | |
# model.half() | |
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" | |
CHAT_TEMPLATE = "َAuto" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
CONTEXT_LENGTH = 16000 | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
device_map="auto", | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.bfloat16, | |
# quantization_config=quantization_config, | |
attn_implementation="flash_attention_2", | |
) | |
accelerator = Accelerator() | |
model = accelerator.prepare(model) | |
import json | |
def str_to_json(str_obj): | |
json_obj = json.loads(str_obj) | |
return json_obj | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p): | |
stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
instruction = '<|im_start|>system\n' + system_message + '\n<|im_end|>\n' | |
for user, assistant in history: | |
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' | |
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' | |
print(instruction) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
if input_ids.shape[1] > CONTEXT_LENGTH: | |
input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
generate_kwargs = dict( | |
input_ids=input_ids.to(device), | |
attention_mask=attention_mask.to(device), | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=40, | |
repetition_penalty=1.1, | |
top_p=0.95 | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs= "" | |
for new_token in streamer: | |
print(new_token," ") | |
outputs = outputs+ new_token | |
print("output ",outputs) | |
yield outputs | |
# yield 'retuend' | |
# model.to(accelerator.device) | |
# messages = [] | |
# json_obj = str_to_json(message) | |
# print(json_obj) | |
# messages= json_obj | |
# # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device) | |
# # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda') | |
# # print(f"Converted input_ids dtype: {input_ids.dtype}") | |
# # input_str= str(input_ids2) | |
# # print('input str = ', input_str) | |
# generation_args = { | |
# "max_new_tokens": max_tokens, | |
# "return_full_text": False, | |
# "temperature": temperature, | |
# "do_sample": False, | |
# } | |
# output = pipe(messages, **generation_args) | |
# print(output[0]['generated_text']) | |
# gen_text=output[0]['generated_text'] | |
# # with torch.no_grad(): | |
# # gen_tokens = model.generate( | |
# # input_ids, | |
# # max_new_tokens=max_tokens, | |
# # # do_sample=True, | |
# # temperature=temperature, | |
# # ) | |
# # gen_text = tokenizer.decode(gen_tokens[0]) | |
# # print(gen_text) | |
# # gen_text= gen_text.replace(input_str,'') | |
# # gen_text= gen_text.replace('<|im_end|>','') | |
# yield gen_text | |
# messages = [ | |
# # {"role": "user", "content": "What is your favourite condiment?"}, | |
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, | |
# # {"role": "user", "content": "Do you have mayonnaise recipes?"} | |
# ] | |
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") | |
# outputs = model.generate(inputs, max_new_tokens=2000) | |
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# print(gen_text) | |
# yield gen_text | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |