Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,16 @@ from huggingface_hub import InferenceClient
|
|
7 |
import os
|
8 |
import psutil
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
"""
|
@@ -49,48 +59,48 @@ import transformers
|
|
49 |
|
50 |
# model_id = "mistralai/Mistral-7B-v0.3"
|
51 |
|
52 |
-
model_id = "microsoft/Phi-3-medium-4k-instruct"
|
53 |
-
# model_id = "microsoft/phi-4"
|
54 |
|
55 |
-
# model_id = "Qwen/Qwen2-7B-Instruct"
|
56 |
|
57 |
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
trust_remote_code=True)
|
64 |
|
65 |
|
66 |
-
accelerator = Accelerator()
|
67 |
|
68 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
|
80 |
|
81 |
|
82 |
|
83 |
|
84 |
|
85 |
-
#
|
86 |
-
model = accelerator.prepare(model)
|
87 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
88 |
|
89 |
-
pipe = pipeline(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
94 |
|
95 |
|
96 |
|
@@ -109,6 +119,27 @@ pipe = pipeline(
|
|
109 |
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
|
110 |
# model.half()
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
import json
|
113 |
|
114 |
def str_to_json(str_obj):
|
@@ -123,48 +154,83 @@ def respond(
|
|
123 |
system_message,
|
124 |
max_tokens,
|
125 |
temperature,
|
126 |
-
top_p
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# yield 'retuend'
|
129 |
# model.to(accelerator.device)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
}
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
|
170 |
# messages = [
|
|
|
7 |
import os
|
8 |
import psutil
|
9 |
|
10 |
+
import json
|
11 |
+
import subprocess
|
12 |
+
from threading import Thread
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import spaces
|
16 |
+
import gradio as gr
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
18 |
+
|
19 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
20 |
|
21 |
|
22 |
"""
|
|
|
59 |
|
60 |
# model_id = "mistralai/Mistral-7B-v0.3"
|
61 |
|
62 |
+
# model_id = "microsoft/Phi-3-medium-4k-instruct"
|
63 |
+
# # model_id = "microsoft/phi-4"
|
64 |
|
65 |
+
# # model_id = "Qwen/Qwen2-7B-Instruct"
|
66 |
|
67 |
|
68 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
69 |
+
# # model_id
|
70 |
+
# model_id,
|
71 |
+
# # use_fast=False
|
72 |
+
# token= token,
|
73 |
+
# trust_remote_code=True)
|
74 |
|
75 |
|
76 |
+
# accelerator = Accelerator()
|
77 |
|
78 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
79 |
+
# # torch_dtype= torch.uint8,
|
80 |
+
# torch_dtype=torch.bfloat16,
|
81 |
+
# # load_in_8bit=True,
|
82 |
+
# # # # torch_dtype=torch.fl,
|
83 |
+
# attn_implementation="flash_attention_2",
|
84 |
+
# low_cpu_mem_usage=True,
|
85 |
+
# trust_remote_code=True,
|
86 |
+
# device_map='cuda',
|
87 |
+
# # device_map=accelerator.device_map,
|
88 |
|
89 |
+
# )
|
90 |
|
91 |
|
92 |
|
93 |
|
94 |
|
95 |
+
# #
|
96 |
+
# model = accelerator.prepare(model)
|
97 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
98 |
|
99 |
+
# pipe = pipeline(
|
100 |
+
# "text-generation",
|
101 |
+
# model=model,
|
102 |
+
# tokenizer=tokenizer,
|
103 |
+
# )
|
104 |
|
105 |
|
106 |
|
|
|
119 |
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
|
120 |
# model.half()
|
121 |
|
122 |
+
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
|
123 |
+
CHAT_TEMPLATE = "َAuto"
|
124 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
125 |
+
CONTEXT_LENGTH = 16000
|
126 |
+
|
127 |
+
|
128 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
129 |
+
quantization_config = BitsAndBytesConfig(
|
130 |
+
load_in_4bit=True,
|
131 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
132 |
+
)
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
134 |
+
model = AutoModelForCausalLM.from_pretrained(
|
135 |
+
MODEL_ID,
|
136 |
+
device_map="auto",
|
137 |
+
quantization_config=quantization_config,
|
138 |
+
attn_implementation="flash_attention_2",
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
import json
|
144 |
|
145 |
def str_to_json(str_obj):
|
|
|
154 |
system_message,
|
155 |
max_tokens,
|
156 |
temperature,
|
157 |
+
top_p):
|
158 |
+
|
159 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
160 |
+
instruction = '<|im_start|>system\n' + system_message + '\n<|im_end|>\n'
|
161 |
+
for user, assistant in history:
|
162 |
+
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
|
163 |
+
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
|
164 |
+
|
165 |
+
print(instruction)
|
166 |
+
|
167 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
168 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
169 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
170 |
+
|
171 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
172 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
173 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
174 |
+
|
175 |
+
generate_kwargs = dict(
|
176 |
+
input_ids=input_ids.to(device),
|
177 |
+
attention_mask=attention_mask.to(device),
|
178 |
+
streamer=streamer,
|
179 |
+
do_sample=True,
|
180 |
+
temperature=temperature,
|
181 |
+
max_new_tokens=max_new_tokens,
|
182 |
+
top_k=top_k,
|
183 |
+
repetition_penalty=repetition_penalty,
|
184 |
+
top_p=top_p
|
185 |
+
)
|
186 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
187 |
+
t.start()
|
188 |
+
outputs = []
|
189 |
+
for new_token in streamer:
|
190 |
+
outputs.append(new_token)
|
191 |
+
if new_token in stop_tokens:
|
192 |
+
break
|
193 |
+
yield "".join(outputs)
|
194 |
# yield 'retuend'
|
195 |
# model.to(accelerator.device)
|
196 |
|
197 |
+
# messages = []
|
198 |
+
# json_obj = str_to_json(message)
|
199 |
+
# print(json_obj)
|
200 |
|
201 |
+
# messages= json_obj
|
202 |
+
|
203 |
+
# # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
|
204 |
+
# # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
|
205 |
+
# # print(f"Converted input_ids dtype: {input_ids.dtype}")
|
206 |
+
# # input_str= str(input_ids2)
|
207 |
+
# # print('input str = ', input_str)
|
208 |
+
|
209 |
+
# generation_args = {
|
210 |
+
# "max_new_tokens": max_tokens,
|
211 |
+
# "return_full_text": False,
|
212 |
+
# "temperature": temperature,
|
213 |
+
# "do_sample": False,
|
214 |
+
# }
|
215 |
+
|
216 |
+
# output = pipe(messages, **generation_args)
|
217 |
+
# print(output[0]['generated_text'])
|
218 |
+
# gen_text=output[0]['generated_text']
|
219 |
+
|
220 |
+
# # with torch.no_grad():
|
221 |
+
# # gen_tokens = model.generate(
|
222 |
+
# # input_ids,
|
223 |
+
# # max_new_tokens=max_tokens,
|
224 |
+
# # # do_sample=True,
|
225 |
+
# # temperature=temperature,
|
226 |
+
# # )
|
227 |
+
|
228 |
+
# # gen_text = tokenizer.decode(gen_tokens[0])
|
229 |
+
# # print(gen_text)
|
230 |
+
# # gen_text= gen_text.replace(input_str,'')
|
231 |
+
# # gen_text= gen_text.replace('<|im_end|>','')
|
232 |
|
233 |
+
# yield gen_text
|
234 |
|
235 |
|
236 |
# messages = [
|