Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,16 @@ from huggingface_hub import InferenceClient
|
|
| 7 |
import os
|
| 8 |
import psutil
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
"""
|
|
@@ -49,48 +59,48 @@ import transformers
|
|
| 49 |
|
| 50 |
# model_id = "mistralai/Mistral-7B-v0.3"
|
| 51 |
|
| 52 |
-
model_id = "microsoft/Phi-3-medium-4k-instruct"
|
| 53 |
-
# model_id = "microsoft/phi-4"
|
| 54 |
|
| 55 |
-
# model_id = "Qwen/Qwen2-7B-Instruct"
|
| 56 |
|
| 57 |
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
trust_remote_code=True)
|
| 64 |
|
| 65 |
|
| 66 |
-
accelerator = Accelerator()
|
| 67 |
|
| 68 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
model = accelerator.prepare(model)
|
| 87 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 88 |
|
| 89 |
-
pipe = pipeline(
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
)
|
| 94 |
|
| 95 |
|
| 96 |
|
|
@@ -109,6 +119,27 @@ pipe = pipeline(
|
|
| 109 |
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
|
| 110 |
# model.half()
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
import json
|
| 113 |
|
| 114 |
def str_to_json(str_obj):
|
|
@@ -123,48 +154,83 @@ def respond(
|
|
| 123 |
system_message,
|
| 124 |
max_tokens,
|
| 125 |
temperature,
|
| 126 |
-
top_p
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# yield 'retuend'
|
| 129 |
# model.to(accelerator.device)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
}
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
|
| 170 |
# messages = [
|
|
|
|
| 7 |
import os
|
| 8 |
import psutil
|
| 9 |
|
| 10 |
+
import json
|
| 11 |
+
import subprocess
|
| 12 |
+
from threading import Thread
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import spaces
|
| 16 |
+
import gradio as gr
|
| 17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
| 18 |
+
|
| 19 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 20 |
|
| 21 |
|
| 22 |
"""
|
|
|
|
| 59 |
|
| 60 |
# model_id = "mistralai/Mistral-7B-v0.3"
|
| 61 |
|
| 62 |
+
# model_id = "microsoft/Phi-3-medium-4k-instruct"
|
| 63 |
+
# # model_id = "microsoft/phi-4"
|
| 64 |
|
| 65 |
+
# # model_id = "Qwen/Qwen2-7B-Instruct"
|
| 66 |
|
| 67 |
|
| 68 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 69 |
+
# # model_id
|
| 70 |
+
# model_id,
|
| 71 |
+
# # use_fast=False
|
| 72 |
+
# token= token,
|
| 73 |
+
# trust_remote_code=True)
|
| 74 |
|
| 75 |
|
| 76 |
+
# accelerator = Accelerator()
|
| 77 |
|
| 78 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
| 79 |
+
# # torch_dtype= torch.uint8,
|
| 80 |
+
# torch_dtype=torch.bfloat16,
|
| 81 |
+
# # load_in_8bit=True,
|
| 82 |
+
# # # # torch_dtype=torch.fl,
|
| 83 |
+
# attn_implementation="flash_attention_2",
|
| 84 |
+
# low_cpu_mem_usage=True,
|
| 85 |
+
# trust_remote_code=True,
|
| 86 |
+
# device_map='cuda',
|
| 87 |
+
# # device_map=accelerator.device_map,
|
| 88 |
|
| 89 |
+
# )
|
| 90 |
|
| 91 |
|
| 92 |
|
| 93 |
|
| 94 |
|
| 95 |
+
# #
|
| 96 |
+
# model = accelerator.prepare(model)
|
| 97 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 98 |
|
| 99 |
+
# pipe = pipeline(
|
| 100 |
+
# "text-generation",
|
| 101 |
+
# model=model,
|
| 102 |
+
# tokenizer=tokenizer,
|
| 103 |
+
# )
|
| 104 |
|
| 105 |
|
| 106 |
|
|
|
|
| 119 |
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
|
| 120 |
# model.half()
|
| 121 |
|
| 122 |
+
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
|
| 123 |
+
CHAT_TEMPLATE = "َAuto"
|
| 124 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 125 |
+
CONTEXT_LENGTH = 16000
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 129 |
+
quantization_config = BitsAndBytesConfig(
|
| 130 |
+
load_in_4bit=True,
|
| 131 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 132 |
+
)
|
| 133 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 134 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 135 |
+
MODEL_ID,
|
| 136 |
+
device_map="auto",
|
| 137 |
+
quantization_config=quantization_config,
|
| 138 |
+
attn_implementation="flash_attention_2",
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
import json
|
| 144 |
|
| 145 |
def str_to_json(str_obj):
|
|
|
|
| 154 |
system_message,
|
| 155 |
max_tokens,
|
| 156 |
temperature,
|
| 157 |
+
top_p):
|
| 158 |
+
|
| 159 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
| 160 |
+
instruction = '<|im_start|>system\n' + system_message + '\n<|im_end|>\n'
|
| 161 |
+
for user, assistant in history:
|
| 162 |
+
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
|
| 163 |
+
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
|
| 164 |
+
|
| 165 |
+
print(instruction)
|
| 166 |
+
|
| 167 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 168 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
| 169 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
| 170 |
+
|
| 171 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
| 172 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
| 173 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
| 174 |
+
|
| 175 |
+
generate_kwargs = dict(
|
| 176 |
+
input_ids=input_ids.to(device),
|
| 177 |
+
attention_mask=attention_mask.to(device),
|
| 178 |
+
streamer=streamer,
|
| 179 |
+
do_sample=True,
|
| 180 |
+
temperature=temperature,
|
| 181 |
+
max_new_tokens=max_new_tokens,
|
| 182 |
+
top_k=top_k,
|
| 183 |
+
repetition_penalty=repetition_penalty,
|
| 184 |
+
top_p=top_p
|
| 185 |
+
)
|
| 186 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 187 |
+
t.start()
|
| 188 |
+
outputs = []
|
| 189 |
+
for new_token in streamer:
|
| 190 |
+
outputs.append(new_token)
|
| 191 |
+
if new_token in stop_tokens:
|
| 192 |
+
break
|
| 193 |
+
yield "".join(outputs)
|
| 194 |
# yield 'retuend'
|
| 195 |
# model.to(accelerator.device)
|
| 196 |
|
| 197 |
+
# messages = []
|
| 198 |
+
# json_obj = str_to_json(message)
|
| 199 |
+
# print(json_obj)
|
| 200 |
|
| 201 |
+
# messages= json_obj
|
| 202 |
+
|
| 203 |
+
# # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
|
| 204 |
+
# # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
|
| 205 |
+
# # print(f"Converted input_ids dtype: {input_ids.dtype}")
|
| 206 |
+
# # input_str= str(input_ids2)
|
| 207 |
+
# # print('input str = ', input_str)
|
| 208 |
+
|
| 209 |
+
# generation_args = {
|
| 210 |
+
# "max_new_tokens": max_tokens,
|
| 211 |
+
# "return_full_text": False,
|
| 212 |
+
# "temperature": temperature,
|
| 213 |
+
# "do_sample": False,
|
| 214 |
+
# }
|
| 215 |
+
|
| 216 |
+
# output = pipe(messages, **generation_args)
|
| 217 |
+
# print(output[0]['generated_text'])
|
| 218 |
+
# gen_text=output[0]['generated_text']
|
| 219 |
+
|
| 220 |
+
# # with torch.no_grad():
|
| 221 |
+
# # gen_tokens = model.generate(
|
| 222 |
+
# # input_ids,
|
| 223 |
+
# # max_new_tokens=max_tokens,
|
| 224 |
+
# # # do_sample=True,
|
| 225 |
+
# # temperature=temperature,
|
| 226 |
+
# # )
|
| 227 |
+
|
| 228 |
+
# # gen_text = tokenizer.decode(gen_tokens[0])
|
| 229 |
+
# # print(gen_text)
|
| 230 |
+
# # gen_text= gen_text.replace(input_str,'')
|
| 231 |
+
# # gen_text= gen_text.replace('<|im_end|>','')
|
| 232 |
|
| 233 |
+
# yield gen_text
|
| 234 |
|
| 235 |
|
| 236 |
# messages = [
|