Spaces:
Runtime error
Runtime error
Commit
·
b075d3c
1
Parent(s):
ec3aad6
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import nltk
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from scipy.spatial.distance import cosine
|
| 6 |
+
import numpy as np
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from sklearn.cluster import KMeans
|
| 10 |
+
import tensorflow as tf
|
| 11 |
+
import tensorflow_hub as hub
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def cluster_examples(messages, embed, nc=3):
|
| 15 |
+
km = KMeans(
|
| 16 |
+
n_clusters=nc, init='random',
|
| 17 |
+
n_init=10, max_iter=300,
|
| 18 |
+
tol=1e-04, random_state=0
|
| 19 |
+
)
|
| 20 |
+
km = km.fit_predict(embed)
|
| 21 |
+
for n in range(nc):
|
| 22 |
+
idxs = [i for i in range(len(km)) if km[i] == n]
|
| 23 |
+
ms = [messages[i] for i in idxs]
|
| 24 |
+
st.markdown ("CLUSTER : %d"%n)
|
| 25 |
+
for m in ms:
|
| 26 |
+
st.markdown (m)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def plot_heatmap(labels, heatmap, rotation=90):
|
| 30 |
+
sns.set(font_scale=1.2)
|
| 31 |
+
fig, ax = plt.subplots()
|
| 32 |
+
g = sns.heatmap(
|
| 33 |
+
heatmap,
|
| 34 |
+
xticklabels=labels,
|
| 35 |
+
yticklabels=labels,
|
| 36 |
+
vmin=-1,
|
| 37 |
+
vmax=1,
|
| 38 |
+
cmap="coolwarm")
|
| 39 |
+
g.set_xticklabels(labels, rotation=rotation)
|
| 40 |
+
g.set_title("Textual Similarity")
|
| 41 |
+
st.pyplot(fig)
|
| 42 |
+
|
| 43 |
+
# Streamlit text boxes
|
| 44 |
+
text = st.text_area('Enter sentences:', value="Behavior right this is a kind of Heisenberg uncertainty principle situation if I told you, then you behave differently. What would be the impressive thing is you have talked about winning a nobel prize in a system winning a nobel prize. Adjusting it and then making your own. That is when I fell in love with computers. I realized that they were a very magical device. Can go to sleep come back the next day and it is solved. You know that feels magical to me.")
|
| 45 |
+
|
| 46 |
+
nc = st.slider('Select a number of clusters:', min_value=1, max_value=15, value=3)
|
| 47 |
+
|
| 48 |
+
model_type = st.radio("Choose model:", ('Sentence Transformer', 'Universal Sentence Encoder'), index=0)
|
| 49 |
+
|
| 50 |
+
# Model setup
|
| 51 |
+
if model_type == "Sentence Transformer":
|
| 52 |
+
model = SentenceTransformer('paraphrase-distilroberta-base-v1')
|
| 53 |
+
elif model_type == "Universal Sentence Encoder":
|
| 54 |
+
model_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
|
| 55 |
+
model = hub.load(model_url)
|
| 56 |
+
|
| 57 |
+
nltk.download('punkt')
|
| 58 |
+
|
| 59 |
+
# Run model
|
| 60 |
+
if text:
|
| 61 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
| 62 |
+
if model_type == "Sentence Transformer":
|
| 63 |
+
embed = model.encode(sentences)
|
| 64 |
+
elif model_type == "Universal Sentence Encoder":
|
| 65 |
+
embed = model(sentences).numpy()
|
| 66 |
+
sim = np.zeros([len(embed), len(embed)])
|
| 67 |
+
for i,em in enumerate(embed):
|
| 68 |
+
for j,ea in enumerate(embed):
|
| 69 |
+
sim[i][j] = 1.0-cosine(em,ea)
|
| 70 |
+
st.subheader("Similarity Heatmap")
|
| 71 |
+
plot_heatmap(sentences, sim)
|
| 72 |
+
st.subheader("Results from K-Means Clustering")
|
| 73 |
+
cluster_examples(sentences, embed, nc)
|