File size: 5,404 Bytes
bbb171e
 
 
 
 
 
 
 
 
 
 
 
 
cc99942
 
bbb171e
 
 
cc99942
 
 
 
 
bbb171e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc99942
bbb171e
8ac6b3b
 
 
 
87ced4a
 
 
 
8ac6b3b
bbb171e
 
 
cc99942
 
 
 
bbb171e
 
 
 
 
cc99942
bbb171e
 
 
 
 
 
 
 
 
 
 
0062690
bbb171e
 
 
 
2b49144
da00f10
cc99942
 
bbb171e
 
 
0062690
cc99942
bbb171e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
from hashformers import TransformerWordSegmenter as WordSegmenter
import pandas as pd

article_string = "Author: <a href=\"https://huggingface.co/ruanchaves\">Ruan Chaves Rodrigues</a>. Read more about the <a href=\"https://github.com/ruanchaves/hashformers\">Hashformers library</a>."

app_title = "Hashtag segmentation"

app_description = """
Hashtag segmentation is the task of automatically adding spaces between the words on a hashtag.
This app uses the <a href=\"https://github.com/ruanchaves/hashformers\">Hashformers library</a> to suggest segmentations for hashtags.

Enter a hashtag or pick one from the examples below. The app will suggest the best segmentation for the hashtag.

In the advanced settings, decreasing the slider values will make the app faster, but it may also reduce its accuracy.
"""

app_examples = [
    ["#cristianoronaldo", "portuguese"],
    ["#madridsinfiltros", "spanish"],
    ["#kuenstlicheintelligenz", "german"],
    ["#dadscare", "english (fast)"],
    ["#nowthatcherisdead", "english"],
]

output_json_component_description = {"": ""}

model_dict = {
        "english": WordSegmenter(
        segmenter_model_name_or_path="gpt2",
        reranker_model_name_or_path="bert-base-uncased",
        segmenter_device="cpu",
        ),
        "english (fast)": WordSegmenter(
        segmenter_model_name_or_path="distilgpt2",
        reranker_model_name_or_path="distilbert-base-uncased",
        segmenter_device="cpu",
        ),
        "spanish": WordSegmenter(
        segmenter_model_name_or_path="mrm8488/spanish-gpt2",
        reranker_model_name_or_path="dccuchile/bert-base-spanish-wwm-cased",
        segmenter_device="cpu",
        ),
        "portuguese": WordSegmenter(
        segmenter_model_name_or_path="pierreguillou/gpt2-small-portuguese",
        reranker_model_name_or_path="neuralmind/bert-base-portuguese-cased",
        segmenter_device="cpu",
        ),
        "german": WordSegmenter(
        segmenter_model_name_or_path="dbmdz/german-gpt2",
        reranker_model_name_or_path="bert-base-german-cased",
        segmenter_device="cpu",
        ),
}

language_list = list(model_dict.keys())

def format_dataframe(df):
    if not isinstance(df, pd.DataFrame):
        return df
    df = df[["segmentation", "score"]]
    df["score"] = df["score"].apply(lambda x: 1/x)
    df["score"] = df["score"].apply(lambda x: round(x, 4))
    return df

def convert_to_score_dict(df):
    if not isinstance(df, pd.DataFrame):
        return {}
    df = df[["segmentation", "score"]]
    return df.set_index("segmentation").T.to_dict("records")[0]

def get_candidates_df(candidates, segmenter_score_dict, reranker_score_dict ):
    candidates_df = []
    for candidate in candidates:
        candidates_df.append(
            {
                "segmentation": candidate,
                "segmenter score": segmenter_score_dict.get(candidate, 0),
                "reranker score": reranker_score_dict.get(candidate, 0),
            })
    candidates_df = pd.DataFrame(candidates_df)
    return candidates_df

def parse_candidates(candidates):
    if not candidates:
        return []
    candidates = candidates.split(",")
    candidates = [c.strip() for c in candidates]
    return candidates

def predict(s1, language, use_reranker, topk, steps):
    hashtag_list = [s1]
    if language:
        chosen_model = model_dict[language]
    else:
        chosen_model = model_dict["english (fast)"]

    if not all([topk, steps]):
        return None, None

    segmentation = chosen_model.segment(hashtag_list, use_reranker=use_reranker, return_ranks=True, topk=topk, steps=steps)
    segmenter_df = format_dataframe(segmentation.segmenter_rank)
    reranker_df = format_dataframe(segmentation.reranker_rank)
    
    if not use_reranker:
        candidates_list = segmenter_df.head(3)["segmentation"].tolist()
    else:
        candidates_list = reranker_df.head(3)["segmentation"].tolist()

    top_segmentation = segmentation.output[0]
    segmenter_score_dict = convert_to_score_dict(segmenter_df)
    reranker_score_dict = convert_to_score_dict(reranker_df)
    top_segmentation_df = get_candidates_df([top_segmentation], segmenter_score_dict, reranker_score_dict)


    candidates_df = get_candidates_df(candidates_list, segmenter_score_dict, reranker_score_dict)
    output_df = pd.concat([top_segmentation_df, candidates_df], axis=0)

    if use_reranker:
        output_df = output_df.sort_values(by="reranker score", ascending=False)
    else:
        output_df = output_df.sort_values(by="segmenter score", ascending=False)

    output_df = output_df.drop_duplicates(subset="segmentation", keep="first")

    return "# **{0}**".format(top_segmentation), output_df


inputs = [
    gr.Textbox(label="Hashtag"),
    gr.Dropdown(language_list, label="Language", value="english (fast)"),
    gr.Checkbox(label="Use reranker", value=False),
    gr.Slider(0, 100, value=20, label="Advanced setting - Beamsearch: Number of beams"),
    gr.Slider(0, 100, value=13, label="Advanced setting - Maximum number of spaces allowed")
]

outputs = [
 gr.Markdown(label="Suggested segmentation"),
 gr.DataFrame(label="Top alternatives"),
]


gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title, 
             description=app_description,
             examples=app_examples,
             article = article_string).launch()