File size: 9,884 Bytes
860c6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ec9e5
 
 
 
 
860c6b0
80ec9e5
 
 
 
d4d16aa
1a1bc65
 
 
 
06b5e66
1a1bc65
 
80ec9e5
 
1a1bc65
80ec9e5
1a1bc65
80ec9e5
 
1a1bc65
 
 
06b5e66
 
 
 
1a1bc65
06b5e66
 
1a1bc65
 
 
 
860c6b0
 
 
80ec9e5
 
860c6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ec9e5
 
 
 
 
 
 
 
 
 
860c6b0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import argparse
import gradio
import torch
import torch.backends.cudnn as cudnn
from src.utils.vis import prob_to_mask
from src.lari.model import LaRIModel, DinoSegModel
from tools import load_model, process_image, post_process_output, get_masked_depth, save_to_glb, get_point_cloud, removebg_crop
from huggingface_hub import hf_hub_download

parser = argparse.ArgumentParser("Arguments for deploying a LaRI Demo")

parser.add_argument(
    "--model_info_pm",
    type=str,
    default="LaRIModel(use_pretrained = 'moge_full', num_output_layer = 5, head_type = 'point')",
    help="Network parameters to load the model",
)

parser.add_argument(
    "--model_info_mask",
    type=str,
    default="DinoSegModel(use_pretrained = 'dinov2', dim_proj = 256, pretrained_path = '', num_output_layer = 4, output_type = 'ray_stop')",
    help="Network parameters to load the model",
)

parser.add_argument(
    "--ckpt_path_pm",
    type=str,
    default="lari_obj_16k_pointmap.pth",
    help="Path to pre-trained weights",
)

parser.add_argument(
    "--ckpt_path_mask",
    type=str,
    default="lari_obj_16k_seg.pth",
    help="Path to pre-trained weights",
)

parser.add_argument(
    "--resolution", type=int, default=512, help="Default model resolution"
)
args = parser.parse_args()



def model_forward(pil_input, layered_id, rembg_checkbox):
    """
    Perform LaRI estimation by:
    1. image processing
    2. network forward
    3. save masked layered depth image
    4. save point cloud
    """
    if pil_input is None:
        return (None, None, None, None, None, None)

    if rembg_checkbox:
        pil_input = removebg_crop(pil_input)

    # Process the input image.
    input_tensor, ori_img_tensor, crop_coords, original_size = process_image(
        pil_input, resolution=512
    )
    input_tensor = input_tensor.to(device)

    # Run inference.
    with torch.no_grad():
        # lari map
        pred_dict = model_pm(input_tensor)
        lari_map = -pred_dict["pts3d"].squeeze(
            0
        )  # Expected output shape: (H_reso, W_reso, L, 3)
        # mask
        if model_mask:
            pred_dict = model_mask(input_tensor)
            assert "seg_prob" in pred_dict
            valid_mask = prob_to_mask(pred_dict["seg_prob"].squeeze(0))  # H W L 1
        else:
            h, w, l, _ = lari_map.shape
            valid_mask = torch.new_ones((h, w, l, 1), device=lari_map.device)

    # crop & resize the output to the original resolution.
    if original_size[0] != args.resolution or original_size[1] != args.resolution:
        lari_map = post_process_output(lari_map, crop_coords, original_size)  # H W L 3
        valid_mask = post_process_output(
            valid_mask.float(), crop_coords, original_size
        ).bool()  # H W L 1

    max_n_layer = min(valid_mask.shape[-2], lari_map.shape[-2])
    valid_mask = valid_mask[:, :, :max_n_layer, :]
    lari_map = lari_map[:, :, :max_n_layer, :]

    curr_layer_id = min(max_n_layer - 1, layered_id - 1)

    # masked depth list
    depth_image = get_masked_depth(
        lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id
    )
    # point cloud
    glb_path, ply_path = get_point_cloud(
        lari_map, ori_img_tensor, valid_mask, first_layer_color="pseudo"
    )

    return (
        depth_image,
        glb_path,
        lari_map,
        valid_mask,
        0,
        max_n_layer - 1,
        glb_path,
        ply_path,
        pil_input,
    )


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True


# Download the file
model_path_pm = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_pm, repo_type="model")
model_path_mask = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_mask, repo_type="model")


# Load the model with pretrained weights.
model_pm = load_model(args.model_info_pm, model_path_pm, device)
model_mask = (
    load_model(args.model_info_mask, model_path_mask, device)
    if args.model_info_mask is not None
    else None
)


def change_layer(slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id):

    if lari_map is None:
        return

    slider_layer_id = slider_layer_id - 1
    curr_layer_id = min(slider_layer_id, max_layer_id)
    curr_layer_id = max(curr_layer_id, min_layer_id)

    # masked depth list
    depth_image = get_masked_depth(
        lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id
    )

    return depth_image


def clear_everything():
    return (
        gradio.update(value=None),
        gradio.update(value=None),
        gradio.update(value=None),
        gradio.update(value=None),
        gradio.update(value=None),
        gradio.update(value=None),
        gradio.update(value=None),
    )


with gradio.Blocks(
    css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
    title="LaRI Demo",
) as demo:

    gradio.HTML(
        """
        <h1 style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 1em;">
            LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning
        </h1>
        """
    )
    gradio.HTML(
        """
        <p style="font-size: 16px; line-height: 1.6;">
        This is the official demo of Layered Ray Intersections 
        (<a href="https://ruili3.github.io/lari/index.html" target="_blank" style="color: #42aaf5;">LaRI</a>). 
        This demo currently supports object-level reconstruction only.
        </p>

        <h3 style="color: #42aaf5;">Get Started</h3>
        <p style="font-size: 16px; line-height: 1.6;">
        As a quick start, click one image from `Examples` and press 'Process'. Try it out with your own images by following these steps:
        <ul>
            <li>Load an image</li>
            <li>(Optional) Check the 'Remove Background' box</li>
            <li>Click the 'Process' button</li>
            <li>Explore the layered depth maps (z-channel of the LaRI point map) by adjusting the 'Layer ID' slider</li>
        </ul>
        </p>

        <p style="font-size: 16px; line-height: 1.6;">
        In the '3D Point Cloud' view, different colors represent different intersection layers:  
        <span style="color: #FFBD1C;">Layer 1</span>,  
        <span style="color: #FB5607;">Layer 2</span>,  
        <span style="color: #F15BB5;">Layer 3</span>,  
        <span style="color: #8338EC;">Layer 4</span>.
        </p>

        <h3 style="color: #42aaf5;">Contact</h3>
        <p style="font-size: 16px; line-height: 1.6;">
        If you have any questions, feel free to open an issue on our 
        <a href="https://github.com/ruili3/lari" target="_blank" style="color: #42aaf5;">GitHub repository</a> ⭐
        </p>
        """
    )



    # , <b style="color: #3A86FF;">layer 5</b>.
    lari_map = gradio.State(None)
    valid_mask = gradio.State(None)
    min_layer_id = gradio.State(None)
    max_layer_id = gradio.State(None)

    with gradio.Column():
        with gradio.Row(equal_height=True):
            with gradio.Column(scale=1):
                image_input = gradio.Image(
                    label="Upload an Image", type="pil", height=350
                )
                with gradio.Row():
                    rembg_checkbox = gradio.Checkbox(label="Remove background")
                    clear_button = gradio.Button("Clear")
                    submit_btn = gradio.Button("Process")
            with gradio.Column(scale=1):
                depth_output = gradio.Image(
                    label="LaRI Map at Z-axis (depth)",
                    type="pil",
                    interactive=False,
                    height=300,
                )
                slider_layer_id = gradio.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=1,
                    label="Layer ID",
                    interactive=True,
                )

        with gradio.Row(scale=1):
            outmodel = gradio.Model3D(
                label="3D Point Cloud (Color denotes different layers)",
                interactive=False,
                zoom_speed=0.5,
                pan_speed=0.5,
                height=450,
            )

    with gradio.Row():
        ply_file_output = gradio.File(label="ply output", elem_classes="small-file")
        glb_file_output = gradio.File(label="glb output", elem_classes="small-file")

    submit_btn.click(
        fn=model_forward,
        inputs=[image_input, slider_layer_id, rembg_checkbox],
        outputs=[
            depth_output,
            outmodel,
            lari_map,
            valid_mask,
            min_layer_id,
            max_layer_id,
            glb_file_output,
            ply_file_output,
            image_input,
        ],
    )

    clear_button.click(
        fn=clear_everything,
        outputs=[
            lari_map,
            valid_mask,
            min_layer_id,
            max_layer_id,
            image_input,
            depth_output,
            outmodel,
        ],
    )

    slider_layer_id.change(
        fn=change_layer,
        inputs=[slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id],
        outputs=depth_output,
    )

    gradio.Examples(examples=["./assets/cole_hardware.png",
                              "./assets/3m_tape.png",
                              "./assets/horse.png",
                              "./assets/rhino.png",
                              "./assets/alphabet.png",
                              "./assets/martin_wedge.png",
                              "./assets/d_rose.png",
                              "./assets/ace.png",
                              "./assets/bifidus.png",
                              "./assets/fem.png", 
                              ], 
                              inputs=image_input)


demo.launch(share=False)