Spaces:
Running
Running
File size: 3,988 Bytes
860c6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import argparse
import os
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from src.utils.vis import prob_to_mask
from huggingface_hub import hf_hub_download
from tools import load_model, process_image, post_process_output, get_masked_depth, get_point_cloud, removebg_crop
parser = argparse.ArgumentParser("Arguments for deploying a LaRI Demo")
parser.add_argument(
"--image_path",
type=str,
default="assets/cole_hardware.png",
help="input image name",
)
parser.add_argument(
"--output_path",
type=str,
default="./results",
help="path to save the image",
)
parser.add_argument(
"--model_info_pm",
type=str,
default="LaRIModel(use_pretrained = 'moge_full', num_output_layer = 5, head_type = 'point')",
help="Network parameters to load the model",
)
parser.add_argument(
"--model_info_mask",
type=str,
default="DinoSegModel(use_pretrained = 'dinov2', dim_proj = 256, pretrained_path = '', num_output_layer = 4, output_type = 'ray_stop')",
help="Network parameters to load the model",
)
parser.add_argument(
"--ckpt_path_pm",
type=str,
default="lari_obj_16k_pointmap.pth",
help="Path to pre-trained weights",
)
parser.add_argument(
"--ckpt_path_mask",
type=str,
default="lari_obj_16k_seg.pth",
help="Path to pre-trained weights",
)
parser.add_argument(
"--resolution", type=int, default=512, help="Default model resolution"
)
parser.add_argument(
"--is_remove_background", action="store_true", help="Automatically remove the background."
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
# === Load the model
model_path_pm = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_pm, repo_type="model")
model_path_mask = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_mask, repo_type="model")
# Load the model with pretrained weights.
model_pm = load_model(args.model_info_pm, model_path_pm, device)
model_mask = (
load_model(args.model_info_mask, model_path_mask, device)
if args.model_info_mask is not None
else None
)
# === Image pre-processing
pil_input = Image.open(args.image_path)
if args.is_remove_background:
pil_input = removebg_crop(pil_input) # remove background
input_tensor, ori_img_tensor, crop_coords, original_size = process_image(
pil_input, resolution=512) # crop & resize to fit the model input size
input_tensor = input_tensor.to(device)
# === Run inference
with torch.no_grad():
# lari map
pred_dict = model_pm(input_tensor)
lari_map = -pred_dict["pts3d"].squeeze(
0
)
# mask
if model_mask:
pred_dict = model_mask(input_tensor)
assert "seg_prob" in pred_dict
valid_mask = prob_to_mask(pred_dict["seg_prob"].squeeze(0)) # H W L 1
else:
h, w, l, _ = lari_map.shape
valid_mask = torch.new_ones((h, w, l, 1), device=lari_map.device)
# === crop & resize back to the original resolution
if original_size[0] != args.resolution or original_size[1] != args.resolution:
lari_map = post_process_output(lari_map, crop_coords, original_size) # H W L 3
valid_mask = post_process_output(
valid_mask.float(), crop_coords, original_size
).bool() # H W L 1
max_n_layer = min(valid_mask.shape[-2], lari_map.shape[-2])
valid_mask = valid_mask[:, :, :max_n_layer, :]
lari_map = lari_map[:, :, :max_n_layer, :]
# === save output
os.makedirs(args.output_path, exist_ok=True)
for layer_id in range(max_n_layer):
depth_pil = get_masked_depth(
lari_map=lari_map, valid_mask=valid_mask, layer_id=layer_id
)
depth_pil.save(os.path.join(args.output_path, f"layered_depth_{layer_id}.jpg"))
# point cloud
glb_path, ply_path = get_point_cloud(
lari_map, ori_img_tensor, valid_mask, first_layer_color="pseudo",
target_folder=args.output_path
)
print("All results saved to `{}`.".format(args.output_path)) |