Spaces:
Sleeping
Sleeping
reranking working
Browse files
rag_app/loading_data/load_chroma_db_cross_platform.py
CHANGED
@@ -8,9 +8,6 @@ import sys
|
|
8 |
import zipfile
|
9 |
|
10 |
|
11 |
-
S3_LOCATION = os.getenv("S3_LOCATION")
|
12 |
-
|
13 |
-
|
14 |
def download_chroma_from_s3(s3_location:str,
|
15 |
chroma_vs_name:str,
|
16 |
vectorstore_folder:str,
|
@@ -32,20 +29,27 @@ def download_chroma_from_s3(s3_location:str,
|
|
32 |
# Initialize an S3 client with unsigned configuration for public access
|
33 |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
34 |
s3.download_file(s3_location, chroma_vs_name, vs_save_path)
|
|
|
35 |
|
36 |
# Extract the zip file
|
37 |
with zipfile.ZipFile(file=str(vs_save_path), mode='r') as zip_ref:
|
38 |
zip_ref.extractall(path=vectorstore_folder)
|
39 |
-
|
|
|
40 |
except Exception as e:
|
41 |
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
42 |
|
43 |
# Delete the zip file
|
44 |
vs_save_path.unlink()
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
|
|
|
|
|
|
47 |
chroma_vs_name = "vectorstores/chroma-zurich-mpnet-1500.zip"
|
48 |
-
|
|
|
49 |
vs_destination = str(project_dir / 'vectorstore')
|
50 |
assert Path(vs_destination).is_dir(), "Cannot find vectorstore folder"
|
51 |
|
|
|
8 |
import zipfile
|
9 |
|
10 |
|
|
|
|
|
|
|
11 |
def download_chroma_from_s3(s3_location:str,
|
12 |
chroma_vs_name:str,
|
13 |
vectorstore_folder:str,
|
|
|
29 |
# Initialize an S3 client with unsigned configuration for public access
|
30 |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
31 |
s3.download_file(s3_location, chroma_vs_name, vs_save_path)
|
32 |
+
print('Downloaded file from S3')
|
33 |
|
34 |
# Extract the zip file
|
35 |
with zipfile.ZipFile(file=str(vs_save_path), mode='r') as zip_ref:
|
36 |
zip_ref.extractall(path=vectorstore_folder)
|
37 |
+
print("Extracted zip file")
|
38 |
+
|
39 |
except Exception as e:
|
40 |
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
41 |
|
42 |
# Delete the zip file
|
43 |
vs_save_path.unlink()
|
44 |
+
print("Deleting zip file")
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
+
|
48 |
+
S3_LOCATION = os.getenv("S3_LOCATION")
|
49 |
+
|
50 |
chroma_vs_name = "vectorstores/chroma-zurich-mpnet-1500.zip"
|
51 |
+
|
52 |
+
project_dir = Path().cwd().parent.parent
|
53 |
vs_destination = str(project_dir / 'vectorstore')
|
54 |
assert Path(vs_destination).is_dir(), "Cannot find vectorstore folder"
|
55 |
|
rag_app/reranking.py
CHANGED
@@ -80,31 +80,29 @@ def get_reranked_docs_chroma(query:str,
|
|
80 |
|
81 |
Returns: A list of documents with the highest rank
|
82 |
"""
|
83 |
-
assert num_docs <= 10, "num_docs should be less than similarity search results"
|
84 |
-
|
85 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
|
86 |
model_name=embedding_model)
|
87 |
# Load the vectorstore database
|
88 |
db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
|
89 |
|
90 |
-
# Get
|
91 |
sim_docs = db.similarity_search(query=query, k=10)
|
92 |
|
93 |
-
# Add the page_content, description and title together
|
94 |
passages = [doc.page_content for doc in sim_docs]
|
95 |
|
96 |
# Prepare the payload
|
97 |
payload = {"inputs":
|
98 |
{"source_sentence": query,
|
99 |
"sentences": passages}}
|
100 |
-
|
101 |
|
102 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
103 |
|
104 |
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
|
|
|
105 |
if response.status_code != 200:
|
106 |
print('Something went wrong with the response')
|
107 |
return
|
|
|
108 |
similarity_scores = response.json()
|
109 |
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
|
110 |
top_k_results = ranked_results[:num_docs]
|
@@ -113,16 +111,17 @@ def get_reranked_docs_chroma(query:str,
|
|
113 |
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
-
|
|
|
117 |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
118 |
EMBEDDING_MODEL = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
119 |
|
120 |
project_dir = Path().cwd().parent
|
121 |
path_to_vector_db = str(project_dir/'vectorstore/chroma-zurich-mpnet-1500')
|
|
|
122 |
|
123 |
query = "I'm looking for student insurance"
|
124 |
|
125 |
-
|
126 |
re_ranked_docs = get_reranked_docs_chroma(query=query,
|
127 |
path_to_db= path_to_vector_db,
|
128 |
embedding_model=EMBEDDING_MODEL,
|
|
|
80 |
|
81 |
Returns: A list of documents with the highest rank
|
82 |
"""
|
|
|
|
|
83 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
|
84 |
model_name=embedding_model)
|
85 |
# Load the vectorstore database
|
86 |
db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
|
87 |
|
88 |
+
# Get k documents based on similarity search
|
89 |
sim_docs = db.similarity_search(query=query, k=10)
|
90 |
|
|
|
91 |
passages = [doc.page_content for doc in sim_docs]
|
92 |
|
93 |
# Prepare the payload
|
94 |
payload = {"inputs":
|
95 |
{"source_sentence": query,
|
96 |
"sentences": passages}}
|
|
|
97 |
|
98 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
99 |
|
100 |
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
|
101 |
+
print(f'{response = }')
|
102 |
if response.status_code != 200:
|
103 |
print('Something went wrong with the response')
|
104 |
return
|
105 |
+
|
106 |
similarity_scores = response.json()
|
107 |
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
|
108 |
top_k_results = ranked_results[:num_docs]
|
|
|
111 |
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
+
|
115 |
+
|
116 |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
117 |
EMBEDDING_MODEL = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
118 |
|
119 |
project_dir = Path().cwd().parent
|
120 |
path_to_vector_db = str(project_dir/'vectorstore/chroma-zurich-mpnet-1500')
|
121 |
+
assert Path(path_to_vector_db).exists(), "Cannot access path_to_vector_db "
|
122 |
|
123 |
query = "I'm looking for student insurance"
|
124 |
|
|
|
125 |
re_ranked_docs = get_reranked_docs_chroma(query=query,
|
126 |
path_to_db= path_to_vector_db,
|
127 |
embedding_model=EMBEDDING_MODEL,
|