isayahc commited on
Commit
992dc29
·
unverified ·
1 Parent(s): 3b85ad0

attempt to use rag_config

Browse files
rag_app/__init__.py CHANGED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from pathlib import Path
3
+
4
+ # Add the project root to the Python path
5
+ project_root = str(Path(__file__).parent.parent)
6
+ if project_root not in sys.path:
7
+ sys.path.append(project_root)
rag_app/vector_store_handler/vectorstores.py CHANGED
@@ -4,6 +4,14 @@ from langchain.embeddings import OpenAIEmbeddings
4
  from langchain.text_splitter import CharacterTextSplitter
5
  from langchain.document_loaders import TextLoader
6
 
 
 
 
 
 
 
 
 
7
  class BaseVectorStore(ABC):
8
  """
9
  Abstract base class for vector stores.
@@ -170,10 +178,13 @@ def main():
170
  """
171
  # Create an embedding model
172
  embedding_model = OpenAIEmbeddings()
 
 
 
173
 
174
  # Using Chroma
175
  chroma_store = ChromaVectorStore(embedding_model, persist_directory="./chroma_store")
176
- texts = chroma_store.load_and_process_documents("path/to/your/file.txt")
177
  chroma_store.create_vectorstore(texts)
178
  results = chroma_store.similarity_search("Your query here")
179
  print("Chroma results:", results[0].page_content)
 
4
  from langchain.text_splitter import CharacterTextSplitter
5
  from langchain.document_loaders import TextLoader
6
 
7
+
8
+ from langchain_community.embeddings.sentence_transformer import (
9
+ SentenceTransformerEmbeddings,
10
+ )
11
+ import time
12
+ from langchain_core.documents import Document
13
+ from config import EMBEDDING_MODEL
14
+
15
  class BaseVectorStore(ABC):
16
  """
17
  Abstract base class for vector stores.
 
178
  """
179
  # Create an embedding model
180
  embedding_model = OpenAIEmbeddings()
181
+
182
+ embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL)
183
+
184
 
185
  # Using Chroma
186
  chroma_store = ChromaVectorStore(embedding_model, persist_directory="./chroma_store")
187
+ texts = chroma_store.load_and_process_documents("docs/placeholder.txt")
188
  chroma_store.create_vectorstore(texts)
189
  results = chroma_store.similarity_search("Your query here")
190
  print("Chroma results:", results[0].page_content)