Spaces:
Sleeping
Sleeping
merging from main
Browse files- .github/{ISSUE_TEMPLATE/issue_template.md → issue_template.md} +0 -0
- .github/{ISSUE_TEMPLATE/pullrequest_template.md → pullrequest_template.md} +0 -0
- .github/workflows/sync_2_hf.yaml +1 -1
- .gitignore +2 -0
- README.md +1 -1
- app_gui.py +1 -0
- example.env +3 -5
- rag_app/agents/react_agent.py +14 -17
- rag_app/chains/__init__.py +0 -1
- rag_app/loading_data/load_S3_vector_stores.py +33 -31
- rag_app/loading_data/load_chroma_db_cross_platform.py +59 -0
- rag_app/reranking.py +65 -14
- rag_app/structured_tools/structured_tools.py +8 -0
- rag_app/templates/react_json_with_memory_ger.py +2 -2
.github/{ISSUE_TEMPLATE/issue_template.md → issue_template.md}
RENAMED
File without changes
|
.github/{ISSUE_TEMPLATE/pullrequest_template.md → pullrequest_template.md}
RENAMED
File without changes
|
.github/workflows/sync_2_hf.yaml
CHANGED
@@ -17,4 +17,4 @@ jobs:
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
-
run: git push https://sabazo:[email protected]/spaces/sabazo/
|
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push https://sabazo:[email protected]/spaces/sabazo/insurance_advisor_wb main
|
.gitignore
CHANGED
@@ -166,4 +166,6 @@ cython_debug/
|
|
166 |
*.pickle
|
167 |
|
168 |
|
|
|
|
|
169 |
*.db
|
|
|
166 |
*.pickle
|
167 |
|
168 |
|
169 |
+
# Databases
|
170 |
+
|
171 |
*.db
|
README.md
CHANGED
@@ -3,7 +3,7 @@ title: Insurance Advisor Agents PoC
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
-
sdk:
|
7 |
python: 3.11
|
8 |
app_file: app_gui.py
|
9 |
pinned: false
|
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
python: 3.11
|
8 |
app_file: app_gui.py
|
9 |
pinned: false
|
app_gui.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
|
|
4 |
from rag_app.agents.react_agent import agent_executor
|
5 |
from config import db
|
6 |
|
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
4 |
+
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
5 |
from rag_app.agents.react_agent import agent_executor
|
6 |
from config import db
|
7 |
|
example.env
CHANGED
@@ -5,14 +5,12 @@ GOOGLE_API_KEY=""
|
|
5 |
|
6 |
# Vectorstore storage on S3 and locally
|
7 |
S3_LOCATION="rad-rag-demos"
|
8 |
-
#FAISS_VS_NAME="vectorstores/faiss-insurance-agent-mpnet-1500.zip"
|
9 |
-
#FAISS_VS_NAME="vectorstores/faiss-insurance-agent-MiniLM-L12-1500.zip"
|
10 |
FAISS_VS_NAME="vectorstores/faiss-insurance-agent-multilingual-cased-1500.zip"
|
11 |
-
CHROMA_VS_NAME="vectorstores/chroma-
|
12 |
-
#
|
13 |
-
#CHROMA_VS_NAME="vectorstore/chroma-insurance-agent-MiniLM-L12-1500.zip"
|
14 |
FAISS_INDEX_PATH = "./vectorstore/faiss-insurance-agent-multilingual-cased-1500"
|
15 |
CHROMA_DIRECTORY = "./vectorstore/chroma-insurance-agent-multilingual-cased-500"
|
|
|
16 |
|
17 |
# for chromadb
|
18 |
VECTOR_DATABASE_LOCATION="./vectorstore/chroma-insurance-agent-multilingual-cased-500"
|
|
|
5 |
|
6 |
# Vectorstore storage on S3 and locally
|
7 |
S3_LOCATION="rad-rag-demos"
|
|
|
|
|
8 |
FAISS_VS_NAME="vectorstores/faiss-insurance-agent-multilingual-cased-1500.zip"
|
9 |
+
CHROMA_VS_NAME="vectorstores/chroma-zurich-mpnet-1500.zip"
|
10 |
+
# directories that need to be adjusted for windows
|
|
|
11 |
FAISS_INDEX_PATH = "./vectorstore/faiss-insurance-agent-multilingual-cased-1500"
|
12 |
CHROMA_DIRECTORY = "./vectorstore/chroma-insurance-agent-multilingual-cased-500"
|
13 |
+
VS_DESTINATION_FOLDER="./vectorstore/"
|
14 |
|
15 |
# for chromadb
|
16 |
VECTOR_DATABASE_LOCATION="./vectorstore/chroma-insurance-agent-multilingual-cased-500"
|
rag_app/agents/react_agent.py
CHANGED
@@ -7,17 +7,17 @@ from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
|
|
7 |
from langchain.tools.render import render_text_description
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
)
|
13 |
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
from rag_app.templates.react_json_with_memory_ger import template_system
|
16 |
# from innovation_pathfinder_ai.utils import logger
|
17 |
-
# from langchain.globals import set_llm_cache
|
18 |
-
# from langchain.cache import SQLiteCache
|
19 |
-
|
20 |
-
# set_llm_cache(SQLiteCache(database_path=".cache.db"))
|
21 |
# logger = logger.get_console_logger("hf_mixtral_agent")
|
22 |
|
23 |
config = load_dotenv(".env")
|
@@ -25,10 +25,8 @@ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
|
25 |
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
|
26 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
27 |
LLM_MODEL = os.getenv('LLM_MODEL')
|
28 |
-
|
29 |
-
|
30 |
-
# LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY')
|
31 |
-
# LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT')
|
32 |
|
33 |
# Load the model from the Hugging Face Hub
|
34 |
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
@@ -40,11 +38,10 @@ llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
|
40 |
|
41 |
|
42 |
tools = [
|
43 |
-
|
44 |
-
|
45 |
-
web_research,
|
46 |
-
ask_user
|
47 |
-
get_email
|
48 |
]
|
49 |
|
50 |
prompt = PromptTemplate.from_template(
|
@@ -74,8 +71,8 @@ agent_executor = AgentExecutor(
|
|
74 |
agent=agent,
|
75 |
tools=tools,
|
76 |
verbose=True,
|
77 |
-
max_iterations=
|
78 |
-
|
79 |
return_intermediate_steps=True,
|
80 |
handle_parsing_errors=True,
|
81 |
)
|
|
|
7 |
from langchain.tools.render import render_text_description
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
+
# local cache
|
11 |
+
from langchain.globals import set_llm_cache
|
12 |
+
from langchain.cache import SQLiteCache # sqlite
|
13 |
+
#from langchain.cache import InMemoryCache # in memory cache
|
14 |
+
from rag_app.structured_tools.structured_tools import (
|
15 |
+
google_search, knowledgeBase_search
|
16 |
)
|
17 |
|
18 |
from langchain.prompts import PromptTemplate
|
19 |
from rag_app.templates.react_json_with_memory_ger import template_system
|
20 |
# from innovation_pathfinder_ai.utils import logger
|
|
|
|
|
|
|
|
|
21 |
# logger = logger.get_console_logger("hf_mixtral_agent")
|
22 |
|
23 |
config = load_dotenv(".env")
|
|
|
25 |
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
|
26 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
27 |
LLM_MODEL = os.getenv('LLM_MODEL')
|
28 |
+
|
29 |
+
set_llm_cache(SQLiteCache(database_path=".cache.db"))
|
|
|
|
|
30 |
|
31 |
# Load the model from the Hugging Face Hub
|
32 |
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
|
|
38 |
|
39 |
|
40 |
tools = [
|
41 |
+
knowledgeBase_search,
|
42 |
+
google_search,
|
43 |
+
#web_research,
|
44 |
+
#ask_user
|
|
|
45 |
]
|
46 |
|
47 |
prompt = PromptTemplate.from_template(
|
|
|
71 |
agent=agent,
|
72 |
tools=tools,
|
73 |
verbose=True,
|
74 |
+
max_iterations=20, # cap number of iterations
|
75 |
+
max_execution_time=90, # timout at 60 sec
|
76 |
return_intermediate_steps=True,
|
77 |
handle_parsing_errors=True,
|
78 |
)
|
rag_app/chains/__init__.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
# from rag_app.chains.s
|
2 |
from rag_app.chains.user_response_sentiment_chain import user_response_sentiment_prompt
|
|
|
|
|
1 |
from rag_app.chains.user_response_sentiment_chain import user_response_sentiment_prompt
|
rag_app/loading_data/load_S3_vector_stores.py
CHANGED
@@ -32,41 +32,43 @@ embeddings = SentenceTransformerEmbeddings(model_name=model_name)
|
|
32 |
|
33 |
## FAISS
|
34 |
def get_faiss_vs():
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
|
56 |
## Chroma DB
|
57 |
def get_chroma_vs():
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
32 |
|
33 |
## FAISS
|
34 |
def get_faiss_vs():
|
35 |
+
if not os.path.exists(FAISS_INDEX_PATH):
|
36 |
+
# Initialize an S3 client with unsigned configuration for public access
|
37 |
+
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
38 |
|
39 |
+
# Define the destination for the downloaded file
|
40 |
+
VS_DESTINATION = FAISS_INDEX_PATH + ".zip"
|
41 |
+
try:
|
42 |
+
# Download the pre-prepared vectorized index from the S3 bucket
|
43 |
+
print("Downloading the pre-prepared FAISS vectorized index from S3...")
|
44 |
+
s3.download_file(S3_LOCATION, FAISS_VS_NAME, VS_DESTINATION)
|
45 |
|
46 |
+
# Extract the downloaded zip file
|
47 |
+
with zipfile.ZipFile(VS_DESTINATION, 'r') as zip_ref:
|
48 |
+
zip_ref.extractall('./vectorstore/')
|
49 |
+
print("Download and extraction completed.")
|
50 |
+
return FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
54 |
+
#faissdb = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
55 |
|
56 |
|
57 |
## Chroma DB
|
58 |
def get_chroma_vs():
|
59 |
+
if not os.path.exists(CHROMA_DIRECTORY):
|
60 |
+
# Initialize an S3 client with unsigned configuration for public access
|
61 |
+
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
62 |
|
63 |
+
VS_DESTINATION = CHROMA_DIRECTORY+".zip"
|
64 |
+
try:
|
65 |
+
# Download the pre-prepared vectorized index from the S3 bucket
|
66 |
+
print("Downloading the pre-prepared chroma vectorstore from S3...")
|
67 |
+
s3.download_file(S3_LOCATION, CHROMA_VS_NAME, VS_DESTINATION)
|
68 |
+
with zipfile.ZipFile(VS_DESTINATION, 'r') as zip_ref:
|
69 |
+
zip_ref.extractall('./vectorstore/')
|
70 |
+
print("Download and extraction completed.")
|
71 |
+
chromadb = Chroma(persist_directory=CHROMA_DIRECTORY, embedding_function=embeddings)
|
72 |
+
#chromadb.get()
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
rag_app/loading_data/load_chroma_db_cross_platform.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import boto3
|
3 |
+
from botocore.client import Config
|
4 |
+
from botocore import UNSIGNED
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import zipfile
|
9 |
+
|
10 |
+
|
11 |
+
def download_chroma_from_s3(s3_location:str,
|
12 |
+
chroma_vs_name:str,
|
13 |
+
vectorstore_folder:str,
|
14 |
+
vs_save_name:str) -> None:
|
15 |
+
"""
|
16 |
+
Downloads the Chroma DB from an S3 storage to local folder
|
17 |
+
|
18 |
+
Args
|
19 |
+
s3_location (str): The name of S3 bucket
|
20 |
+
chroma_vs_name (str): The name of the file to download from S3
|
21 |
+
vectorstore_folder (str): The filepath to vectorstore folder in project dir
|
22 |
+
vs_save_name (str): The name of the vector store
|
23 |
+
|
24 |
+
"""
|
25 |
+
vs_destination = Path()/vectorstore_folder/vs_save_name
|
26 |
+
vs_save_path = vs_destination.with_suffix('.zip')
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Initialize an S3 client with unsigned configuration for public access
|
30 |
+
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
31 |
+
s3.download_file(s3_location, chroma_vs_name, vs_save_path)
|
32 |
+
print('Downloaded file from S3')
|
33 |
+
|
34 |
+
# Extract the zip file
|
35 |
+
with zipfile.ZipFile(file=str(vs_save_path), mode='r') as zip_ref:
|
36 |
+
zip_ref.extractall(path=vectorstore_folder)
|
37 |
+
print("Extracted zip file")
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
41 |
+
|
42 |
+
# Delete the zip file
|
43 |
+
vs_save_path.unlink()
|
44 |
+
print("Deleting zip file")
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
|
48 |
+
S3_LOCATION = os.getenv("S3_LOCATION")
|
49 |
+
|
50 |
+
chroma_vs_name = "vectorstores/chroma-zurich-mpnet-1500.zip"
|
51 |
+
|
52 |
+
project_dir = Path().cwd().parent.parent
|
53 |
+
vs_destination = str(project_dir / 'vectorstore')
|
54 |
+
assert Path(vs_destination).is_dir(), "Cannot find vectorstore folder"
|
55 |
+
|
56 |
+
download_chroma_from_s3(s3_location=S3_LOCATION,
|
57 |
+
chroma_vs_name=chroma_vs_name,
|
58 |
+
vectorstore_folder=vs_destination,
|
59 |
+
vs_save_name='chroma-zurich-mpnet-1500')
|
rag_app/reranking.py
CHANGED
@@ -5,11 +5,13 @@ from dotenv import load_dotenv
|
|
5 |
import os
|
6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
import requests
|
|
|
|
|
8 |
|
9 |
load_dotenv()
|
10 |
|
11 |
|
12 |
-
def
|
13 |
path_to_db:str,
|
14 |
embedding_model:str,
|
15 |
hf_api_key:str,
|
@@ -59,22 +61,71 @@ def get_reranked_docs(query:str,
|
|
59 |
ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
|
60 |
top_k_results = ranked_results[:num_docs]
|
61 |
return [doc for doc, _, _ in top_k_results]
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
num_docs=5)
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
import requests
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
|
14 |
+
def get_reranked_docs_faiss(query:str,
|
15 |
path_to_db:str,
|
16 |
embedding_model:str,
|
17 |
hf_api_key:str,
|
|
|
61 |
ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
|
62 |
top_k_results = ranked_results[:num_docs]
|
63 |
return [doc for doc, _, _ in top_k_results]
|
64 |
+
|
65 |
|
66 |
+
|
67 |
+
def get_reranked_docs_chroma(query:str,
|
68 |
+
path_to_db:str,
|
69 |
+
embedding_model:str,
|
70 |
+
hf_api_key:str,
|
71 |
+
reranking_hf_url:str = "https://api-inference.huggingface.co/models/sentence-transformers/all-mpnet-base-v2",
|
72 |
+
num_docs:int=5) -> list:
|
73 |
+
""" Re-ranks the similarity search results and returns top-k highest ranked docs
|
74 |
+
|
75 |
+
Args:
|
76 |
+
query (str): The search query
|
77 |
+
path_to_db (str): Path to the vectorstore database
|
78 |
+
embedding_model (str): Embedding model used in the vector store
|
79 |
+
num_docs (int): Number of documents to return
|
80 |
+
|
81 |
+
Returns: A list of documents with the highest rank
|
82 |
+
"""
|
83 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
|
84 |
+
model_name=embedding_model)
|
85 |
+
# Load the vectorstore database
|
86 |
+
db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
|
87 |
|
88 |
+
# Get k documents based on similarity search
|
89 |
+
sim_docs = db.similarity_search(query=query, k=10)
|
90 |
+
|
91 |
+
passages = [doc.page_content for doc in sim_docs]
|
92 |
|
93 |
+
# Prepare the payload
|
94 |
+
payload = {"inputs":
|
95 |
+
{"source_sentence": query,
|
96 |
+
"sentences": passages}}
|
97 |
+
|
98 |
+
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
99 |
|
100 |
+
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
|
101 |
+
print(f'{response = }')
|
102 |
+
if response.status_code != 200:
|
103 |
+
print('Something went wrong with the response')
|
104 |
+
return
|
105 |
|
106 |
+
similarity_scores = response.json()
|
107 |
+
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
|
108 |
+
top_k_results = ranked_results[:num_docs]
|
109 |
+
return [doc for doc, _, _ in top_k_results]
|
|
|
110 |
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
|
115 |
+
|
116 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
117 |
+
EMBEDDING_MODEL = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
118 |
+
|
119 |
+
project_dir = Path().cwd().parent
|
120 |
+
path_to_vector_db = str(project_dir/'vectorstore/chroma-zurich-mpnet-1500')
|
121 |
+
assert Path(path_to_vector_db).exists(), "Cannot access path_to_vector_db "
|
122 |
+
|
123 |
+
query = "I'm looking for student insurance"
|
124 |
+
|
125 |
+
re_ranked_docs = get_reranked_docs_chroma(query=query,
|
126 |
+
path_to_db= path_to_vector_db,
|
127 |
+
embedding_model=EMBEDDING_MODEL,
|
128 |
+
hf_api_key=HUGGINGFACEHUB_API_TOKEN)
|
129 |
+
|
130 |
+
|
131 |
+
print(f"{re_ranked_docs=}")
|
rag_app/structured_tools/structured_tools.py
CHANGED
@@ -4,6 +4,10 @@ from langchain_community.embeddings.sentence_transformer import (
|
|
4 |
SentenceTransformerEmbeddings,
|
5 |
)
|
6 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
|
|
|
|
7 |
from rag_app.utils.utils import (
|
8 |
parse_list_to_dicts, format_search_results
|
9 |
)
|
@@ -11,6 +15,10 @@ import chromadb
|
|
11 |
import os
|
12 |
from config import db, PERSIST_DIRECTORY, EMBEDDING_MODEL
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@tool
|
16 |
def memory_search(query:str) -> str:
|
|
|
4 |
SentenceTransformerEmbeddings,
|
5 |
)
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
+
import ast
|
8 |
+
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
9 |
+
import chromadb
|
10 |
+
|
11 |
from rag_app.utils.utils import (
|
12 |
parse_list_to_dicts, format_search_results
|
13 |
)
|
|
|
15 |
import os
|
16 |
from config import db, PERSIST_DIRECTORY, EMBEDDING_MODEL
|
17 |
|
18 |
+
persist_directory = os.getenv('VECTOR_DATABASE_LOCATION')
|
19 |
+
embedding_model = os.getenv("EMBEDDING_MODEL")
|
20 |
+
if not os.path.exists(persist_directory):
|
21 |
+
get_chroma_vs()
|
22 |
|
23 |
@tool
|
24 |
def memory_search(query:str) -> str:
|
rag_app/templates/react_json_with_memory_ger.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
template_system = """
|
2 |
-
Du bist ein freundlicher Versicherungsproduktberater. Deine Aufgabe ist es, Kunden dabei zu helfen, die besten Produkte der Württembergische GmbH zu finden
|
3 |
-
und ihnen mehr informationen dazu per Email zusenden, wenn du seine Fragen beanwortest hast.\
|
4 |
Hilfe dem Benutzer, Antworten auf seine Fragen zu finden. Antworte kurz und einfach und biete an, dem Benutzer das Produkt und die Bedingungen zu erklären.\
|
|
|
5 |
Beantworte die folgenden Fragen so gut du kannst. Du hast Zugriff auf die folgenden Tools:
|
6 |
|
7 |
<TOOLS>
|
|
|
1 |
template_system = """
|
2 |
+
Du bist ein freundlicher Versicherungsproduktberater. Deine Aufgabe ist es, Kunden dabei zu helfen, die besten Produkte der Württembergische GmbH zu finden.\
|
|
|
3 |
Hilfe dem Benutzer, Antworten auf seine Fragen zu finden. Antworte kurz und einfach und biete an, dem Benutzer das Produkt und die Bedingungen zu erklären.\
|
4 |
+
Wenn du denkst, die Fragen des Benutzers ausreichend beantowrtet zu haben, Frage ihn nach seiner Email Addresse.\
|
5 |
Beantworte die folgenden Fragen so gut du kannst. Du hast Zugriff auf die folgenden Tools:
|
6 |
|
7 |
<TOOLS>
|