File size: 11,724 Bytes
9fc75bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
Multimodal Gemma model implementation
"""
import torch
import torch.nn as nn
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    CLIPVisionModel,
    CLIPProcessor,
    BitsAndBytesConfig
)
from peft import LoraConfig, get_peft_model, TaskType
from typing import Dict, Any, Optional, Tuple
import logging

from .projectors import VisionProjector

logger = logging.getLogger(__name__)


class MultimodalGemma(nn.Module):
    """Multimodal Gemma model with vision and audio capabilities"""
    
    def __init__(self, config: Dict[str, Any]):
        super().__init__()
        self.config = config
        
        # Initialize tokenizer first
        self._setup_tokenizer()
        
        # Initialize language model
        self._setup_language_model()
        
        # Initialize vision components
        self._setup_vision_components()

        # Initialize projectors
        self._setup_projectors()
        
        # Freeze encoders
        self._freeze_encoders()
        
        # Setup LoRA
        self._setup_lora()
        
        logger.info("MultimodalGemma model initialized successfully")

        # Move projectors to the same device as the language model
        self._move_to_device()
    
    def _setup_tokenizer(self):
        """Initialize and configure tokenizer"""
        model_name = self.config["model"]["gemma_model_name"]
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True,
            use_fast=True
        )
        
        # Set padding token
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        
        # Add special tokens
        special_tokens = self.config.get("special_tokens", {})
        new_tokens = []
        
        for token_name, token_value in special_tokens.items():
            if token_value not in self.tokenizer.get_vocab():
                new_tokens.append(token_value)
        
        if new_tokens:
            self.tokenizer.add_special_tokens({"additional_special_tokens": new_tokens})
            logger.info(f"Added special tokens: {new_tokens}")
    
    def _setup_language_model(self):
        """Initialize language model with quantization if specified"""
        model_name = self.config["model"]["gemma_model_name"]
        
        # Setup quantization config
        quantization_config = None
        if self.config["model"].get("use_4bit", False):
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=getattr(torch, self.config["model"]["bnb_4bit_compute_dtype"]),
                bnb_4bit_quant_type=self.config["model"]["bnb_4bit_quant_type"],
                bnb_4bit_use_double_quant=self.config["model"]["use_nested_quant"]
            )
        
        self.language_model = AutoModelForCausalLM.from_pretrained(
            model_name,
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
            device_map=None,  # Lightning handles device placement
            trust_remote_code=True,
            attn_implementation="eager"  # Use eager attention (flash_attn not required)
        )
        
        # Resize embeddings if we added special tokens
        if len(self.tokenizer) > self.language_model.config.vocab_size:
            self.language_model.resize_token_embeddings(len(self.tokenizer))
            logger.info(f"Resized embeddings to {len(self.tokenizer)}")

        # Store image token ID for later use
        self.image_token_id = self.tokenizer.convert_tokens_to_ids(
            self.config.get("special_tokens", {}).get("image_token", "<image>")
        )
    
    def _setup_vision_components(self):
        """Initialize vision encoder and processor"""
        vision_model_name = self.config["model"]["vision_model_name"]
        
        self.vision_encoder = CLIPVisionModel.from_pretrained(
            vision_model_name,
            torch_dtype=torch.bfloat16
        )
        self.vision_processor = CLIPProcessor.from_pretrained(vision_model_name)
        
        logger.info(f"Loaded vision model: {vision_model_name}")
    
    
    def _setup_projectors(self):
        """Initialize projection layers"""
        vision_dim = self.vision_encoder.config.hidden_size
        language_dim = self.language_model.config.hidden_size
        
        # Vision projector
        self.vision_projector = VisionProjector(
            vision_dim=vision_dim,
            language_dim=language_dim,
            hidden_dim=self.config["model"].get("projector_hidden_dim", language_dim)
        ).to(torch.bfloat16)  # Match the model dtype

        logger.info("Initialized vision projection layer")
    
    def _freeze_encoders(self):
        """Freeze vision encoder"""
        # Freeze vision encoder
        for param in self.vision_encoder.parameters():
            param.requires_grad = False

        logger.info("Froze vision encoder parameters")
    
    def _setup_lora(self):
        """Setup LoRA for the language model"""
        lora_config = LoraConfig(
            r=self.config["model"]["lora"]["r"],
            lora_alpha=self.config["model"]["lora"]["alpha"],
            target_modules=self.config["model"]["lora"]["target_modules"],
            lora_dropout=self.config["model"]["lora"]["dropout"],
            bias="none",
            task_type=TaskType.CAUSAL_LM,
        )
        
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.print_trainable_parameters()
        
        logger.info("Setup LoRA adapters")

    def _move_to_device(self):
        """Move all components to the same device as the language model"""
        device = next(self.language_model.parameters()).device

        # Move vision components
        self.vision_encoder = self.vision_encoder.to(device)
        self.vision_projector = self.vision_projector.to(device)

        logger.info(f"Moved vision components to device: {device}")
    
    def encode_images(self, images: torch.Tensor) -> torch.Tensor:
        """
        Encode images using CLIP and project to language space
        
        Args:
            images: [batch_size, 3, height, width]
        Returns:
            projected_features: [batch_size, language_dim]
        """
        with torch.no_grad():
            vision_outputs = self.vision_encoder(pixel_values=images)
            # Use the pooled output (CLS token equivalent)
            image_features = vision_outputs.pooler_output
        
        # Project to language model space
        projected_features = self.vision_projector(image_features)
        return projected_features
    
    
    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        """
        Forward pass with multimodal inputs

        Args:
            input_ids: [batch_size, seq_len]
            attention_mask: [batch_size, seq_len]
            images: [batch_size, 3, height, width] or None
            labels: [batch_size, seq_len] or None

        Returns:
            Dictionary with loss and logits
        """
        if images is not None:
            # Encode images and project to language space
            image_features = self.encode_images(images)  # [batch_size, language_dim]

            # Replace <image> tokens with actual image features
            input_embeds, attention_mask, labels = self._merge_image_features(
                input_ids, image_features, attention_mask, labels
            )

            # Forward through language model with merged embeddings
            outputs = self.language_model(
                inputs_embeds=input_embeds,
                attention_mask=attention_mask,
                labels=labels,
            )
        else:
            # Standard text-only forward pass
            outputs = self.language_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                labels=labels,
            )

        return {
            "loss": outputs.loss,
            "logits": outputs.logits,
        }

    def _merge_image_features(
        self,
        input_ids: torch.Tensor,
        image_features: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Merge image features with text embeddings at <image> token positions

        Args:
            input_ids: [batch_size, seq_len]
            image_features: [batch_size, language_dim]
            attention_mask: [batch_size, seq_len]
            labels: [batch_size, seq_len]

        Returns:
            input_embeds: [batch_size, seq_len, hidden_size]
            attention_mask: [batch_size, seq_len]
            labels: [batch_size, seq_len]
        """
        batch_size, seq_len = input_ids.shape

        # Get text embeddings
        text_embeds = self.language_model.get_input_embeddings()(input_ids)

        # Find positions of <image> tokens
        image_token_mask = (input_ids == self.image_token_id)

        # Replace <image> token embeddings with projected image features
        for batch_idx in range(batch_size):
            image_positions = torch.where(image_token_mask[batch_idx])[0]

            if len(image_positions) > 0:
                # Use the first <image> token position (assuming one image per sample)
                img_pos = image_positions[0]
                text_embeds[batch_idx, img_pos] = image_features[batch_idx]

        return text_embeds, attention_mask, labels
    
    def generate(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        max_new_tokens: int = 150,
        temperature: float = 0.7,
        do_sample: bool = True,
        **kwargs
    ) -> torch.Tensor:
        """Generate text with multimodal context"""

        if images is not None:
            # Encode images and merge with text embeddings
            image_features = self.encode_images(images)
            input_embeds, attention_mask, _ = self._merge_image_features(
                input_ids, image_features, attention_mask, None
            )

            # Generate using language model with merged embeddings
            with torch.no_grad():
                outputs = self.language_model.generate(
                    inputs_embeds=input_embeds,
                    attention_mask=attention_mask,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature,
                    do_sample=do_sample,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id,
                    **kwargs
                )
        else:
            # Standard text-only generation
            with torch.no_grad():
                outputs = self.language_model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature,
                    do_sample=do_sample,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id,
                    **kwargs
                )

        return outputs