Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,64 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
],
|
| 25 |
-
|
| 26 |
-
title="Finetuned Phi-3.5 Text Generation",
|
| 27 |
-
description="Enter a prompt and generate text using the finetuned Phi-3.5 model.",
|
| 28 |
)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from peft import PeftModel, PeftConfig
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
# Check if CUDA is available and set the device
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
print(f"Using device: {device}")
|
| 10 |
+
|
| 11 |
+
# Load model and tokenizer
|
| 12 |
+
MODEL_PATH = "sagar007/phi3.5_finetune"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 14 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 15 |
+
|
| 16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 18 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
| 19 |
+
device_map="auto",
|
| 20 |
+
trust_remote_code=True
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
| 24 |
+
model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
| 25 |
+
model.to(device)
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
@spaces.GPU(duration=60)
|
| 29 |
+
def generate_response(instruction, max_length=512):
|
| 30 |
+
prompt = f"Instruction: {instruction}\nResponse:"
|
| 31 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model.generate(
|
| 35 |
+
**inputs,
|
| 36 |
+
max_length=max_length,
|
| 37 |
+
num_return_sequences=1,
|
| 38 |
+
temperature=0.7,
|
| 39 |
+
top_p=0.9,
|
| 40 |
+
do_sample=True
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
+
return response.split("Response:")[1].strip()
|
| 45 |
+
|
| 46 |
+
def chatbot(message, history):
|
| 47 |
+
response = generate_response(message)
|
| 48 |
+
return response
|
| 49 |
+
|
| 50 |
+
demo = gr.ChatInterface(
|
| 51 |
+
chatbot,
|
| 52 |
+
title="Fine-tuned Phi-3.5 Chatbot",
|
| 53 |
+
description="This is a chatbot using a fine-tuned version of the Phi-2 model.",
|
| 54 |
+
theme="default",
|
| 55 |
+
examples=[
|
| 56 |
+
"Explain the concept of machine learning.",
|
| 57 |
+
"Write a short story about a robot learning to paint.",
|
| 58 |
+
"What are some effective ways to reduce stress?",
|
| 59 |
],
|
| 60 |
+
cache_examples=True,
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
demo.launch()
|