Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# モデルとトークナイザーの読み込み
|
| 6 |
+
model_name = "Sakalti/Baku"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
|
| 9 |
+
|
| 10 |
+
# 応答を生成する関数
|
| 11 |
+
def respond(message, history, max_tokens, temperature, top_p):
|
| 12 |
+
# 入力履歴と新しいメッセージを連結
|
| 13 |
+
if history is None:
|
| 14 |
+
history = []
|
| 15 |
+
|
| 16 |
+
input_text = ""
|
| 17 |
+
for user_message, bot_response in history:
|
| 18 |
+
input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
|
| 19 |
+
input_text += f"User: {message}\nAssistant:"
|
| 20 |
+
|
| 21 |
+
# トークナイズ
|
| 22 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 23 |
+
|
| 24 |
+
# モデルによる応答生成
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model.generate(
|
| 27 |
+
inputs.input_ids,
|
| 28 |
+
max_length=inputs.input_ids.shape[1] + max_tokens,
|
| 29 |
+
do_sample=True,
|
| 30 |
+
top_p=top_p,
|
| 31 |
+
temperature=temperature,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# 応答をデコード
|
| 35 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
+
# 最後のユーザー入力以降の応答部分を抽出
|
| 37 |
+
response = response.split("Assistant:")[-1].strip()
|
| 38 |
+
|
| 39 |
+
# 応答と履歴を更新
|
| 40 |
+
history.append((message, response))
|
| 41 |
+
return response, history
|
| 42 |
+
|
| 43 |
+
# Gradioインターフェースの設定
|
| 44 |
+
with gr.Blocks() as demo:
|
| 45 |
+
gr.Markdown("## AIチャット")
|
| 46 |
+
chatbot = gr.Chatbot()
|
| 47 |
+
msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
|
| 48 |
+
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens")
|
| 49 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
| 50 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 51 |
+
send_button = gr.Button("送信")
|
| 52 |
+
clear = gr.Button("クリア")
|
| 53 |
+
|
| 54 |
+
def clear_history():
|
| 55 |
+
return [], []
|
| 56 |
+
|
| 57 |
+
send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
|
| 58 |
+
clear.click(clear_history, outputs=[chatbot])
|
| 59 |
+
|
| 60 |
+
demo.launch()
|