File size: 7,215 Bytes
d8bc601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import requests
import json
import uuid
import concurrent.futures
from requests.exceptions import ChunkedEncodingError
from src.tarot import tarot_cards
import os

# Define the endpoints
host = os.getenv("BACKEND_URL")
default_endpoint = f"{host}/chat/default"
memory_endpoint = f"{host}/chat/memory"
history_endpoint = f"{host}/view_history"

# Define the request payload structure
class ChatRequest:
    def __init__(self, session_id, messages, model_id, temperature, seer_name):
        self.session_id = session_id
        self.messages = messages
        self.model_id = model_id
        self.temperature = temperature
        self.seer_name = seer_name

class ChatRequestWithMemory(ChatRequest):
    def __init__(self, session_id, messages, model_id, temperature, seer_name, summary_threshold):
        super().__init__(session_id, messages, model_id, temperature, seer_name)
        self.summary_threshold = summary_threshold

def compare_chatbots(session_id, messages, model_id, temperature, seer_name, summary_threshold, tarot_card):
    # Convert messages list to a single string    
    # Prepare the payloads
    print("tarot_card", tarot_card)
    payload_default = json.dumps({
        "session_id": session_id + "_default",
        "messages": messages,
        "model_id": model_id,
        "temperature": temperature,
        "tarot_card": tarot_card,
        "seer_name": seer_name,
    })
    payload_memory = json.dumps({
        "session_id": session_id + "_memory",
        "messages": messages,
        "model_id": model_id,
        "temperature": temperature,
        "seer_name": seer_name,
        "tarot_card": tarot_card,
        "summary_threshold": summary_threshold,
    })
    headers = {
        'Content-Type': 'application/json'
    }

    def call_endpoint(url, payload):
        try:
            response = requests.request("POST", url, headers=headers, data=payload)
            if response.status_code == 200:
                try:
                    return response.text
                except requests.exceptions.JSONDecodeError:
                    return "Error: Response is not valid JSON"
            else:
                return f"Error: {response.status_code} - {response.text}"
        except ChunkedEncodingError:
            return "Error: Response ended prematurely"

    with concurrent.futures.ThreadPoolExecutor() as executor:
        future_default = executor.submit(call_endpoint, default_endpoint, payload_default)
        future_memory = executor.submit(call_endpoint, memory_endpoint, payload_memory)
        
        response_default_text = future_default.result()
        response_memory_text = future_memory.result()

    return response_default_text, response_memory_text

# Function to handle chat interaction
def chat_interaction(session_id, message, model_id, temperature, seer_name, summary_threshold, chat_history_default, chat_history_memory, tarot_card):
    response_default, response_memory = compare_chatbots(session_id, message, model_id, temperature, seer_name, summary_threshold, tarot_card)
    
    chat_history_default.append((message, response_default))
    chat_history_memory.append((message, response_memory))
    
    message = ""
    tarot_card = []
    return message, chat_history_default, chat_history_memory, tarot_card

# Function to reload session ID and clear chat history
def reload_session_and_clear_chat():
    new_session_id = str(uuid.uuid4())
    new_session_id_memory = f"{new_session_id}_memory"
    return new_session_id, new_session_id_memory, [], []

# Function to load chat history
def load_chat_history(session_id):
    try:
        response = requests.get(f"{history_endpoint}?session_id={session_id}")
        if response.status_code == 200:
            return response.json()
        else:
            return {"error": f"Error: {response.status_code} - {response.text}"}
    except Exception as e:
        return {"error": str(e)}

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Comparison")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Default Chatbot")
            chatbot_default = gr.Chatbot(elem_id="chatbot_default")
        
        with gr.Column():
            gr.Markdown("## Memory Chatbot")
            chatbot_memory = gr.Chatbot(elem_id="chatbot_memory")
    
    with gr.Row():
        message = gr.Textbox(label="Message", show_label=False, scale=3)
        submit_button = gr.Button("Submit", scale=1, variant="primary")
    
    session_id_default = str(uuid.uuid4())

    model_id_choices = [
        "llama-3.1-8b-instant",
        "llama-3.1-70b-versatile",
        "typhoon-v1.5-instruct", 
        "typhoon-v1.5x-70b-instruct", 
        "gemma2-9b-it",
        ]

    with gr.Accordion("Settings", open=False):
        reload_button = gr.Button("Reload Session", scale=1, variant="secondary")
        session_id = gr.Textbox(label="Session ID", value=session_id_default)
        model_id = gr.Dropdown(label="Model ID", choices=model_id_choices, value=model_id_choices[0])
        temperature = gr.Slider(0, 1, step=0.1, label="Temperature", value=0.5)
        seer_name = gr.Textbox(label="Seer Name", value="แม่หมอแพตตี้")
        tarot_card = gr.Dropdown(label="Tarot Card", value=[], choices=tarot_cards, multiselect=True)
        summary_threshold = gr.Number(label="Summary Threshold", value=5)

    with gr.Accordion("View History of Memory Chatbot", open=False):
        session_id_memory = gr.Textbox(label="Session ID", value=f"{session_id_default}_memory")
        load_history_button = gr.Button("Load Chat History", scale=1, variant="secondary")  # New button
        chat_history_json = gr.JSON(label="Chat History")  # New JSON field
    
    submit_button.click(
        lambda session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card: chat_interaction(
            session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card
        ),
        inputs=[session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card],
        outputs=[message, chatbot_default, chatbot_memory, tarot_card]
    )

    message.submit(
        lambda session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card: chat_interaction(
            session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card
        ),
        inputs=[session_id, message, model_id, temperature, seer_name, summary_threshold, chatbot_default, chatbot_memory, tarot_card],
        outputs=[message, chatbot_default, chatbot_memory, tarot_card]
    )

    reload_button.click(
        reload_session_and_clear_chat,
        inputs=[],
        outputs=[session_id, session_id_memory, chatbot_default, chatbot_memory]
    )

    load_history_button.click(
        load_chat_history,
        inputs=[session_id_memory],
        outputs=[chat_history_json]
    )

# Launch the interface
demo.launch(show_api=False)