File size: 3,320 Bytes
fa81432
 
 
 
 
95f108c
fa81432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f108c
fa81432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f108c
fa81432
 
95f108c
fa81432
95f108c
 
 
 
fa81432
95f108c
fa81432
95f108c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import sys
if sys.version_info[0] < 3 and sys.version_info[1] < 2:
    raise Exception("Must be using >= Python 3.2")
from os import listdir, path
if not path.isfile('data/face_detection/s3fd-619a316812.pth'):
    raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth before running this script!')
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import argparse, os, traceback, subprocess
import cv2
from tqdm import tqdm
from glob import glob
import audio
from hparams import hparams as hp
import face_detection

parser = argparse.ArgumentParser()
parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int)
parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int)
parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True)
parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True)
args = parser.parse_args()

fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cpu') for _ in range(args.ngpu)]

template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'

def process_video_file(vfile, args, gpu_id):
    video_stream = cv2.VideoCapture(vfile)
    frames = []
    while 1:
        still_reading, frame = video_stream.read()
        if not still_reading:
            video_stream.release()
            break
        frames.append(frame)
    vidname = os.path.basename(vfile).split('.')[0]
    dirname = vfile.split('/')[-2]
    fulldir = path.join(args.preprocessed_root, dirname, vidname)
    os.makedirs(fulldir, exist_ok=True)
    batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
    i = -1
    for fb in batches:
        preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb))
        for j, f in enumerate(preds):
            i += 1
            if f is None:
                continue
            x1, y1, x2, y2 = f
            cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2])

def process_audio_file(vfile, args):
    vidname = os.path.basename(vfile).split('.')[0]
    dirname = vfile.split('/')[-2]
    fulldir = path.join(args.preprocessed_root, dirname, vidname)
    os.makedirs(fulldir, exist_ok=True)
    wavpath = path.join(fulldir, 'audio.wav')
    command = template.format(vfile, wavpath)
    subprocess.call(command, shell=True)

def mp_handler(job):
    vfile, args, gpu_id = job
    try:
        process_video_file(vfile, args, gpu_id)
    except KeyboardInterrupt:
        exit(0)
    except:
        traceback.print_exc()

def main(args):
    print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
filelist = glob(path.join(args.data_root, '*.mp4'))

jobs = [(vfile, args, i % args.ngpu) for i, vfile in enumerate(filelist)]
p = ThreadPoolExecutor(args.ngpu)
futures = [p.submit(mp_handler, j) for j in jobs]
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]

print('Dumping audios...')

for vfile in tqdm(filelist):
    try:
        process_audio_file(vfile, args)
    except KeyboardInterrupt:
        exit(0)
    except:
        traceback.print_exc()
        continue