import io import base64 import webrtcvad import threading import numpy as np from gtts import gTTS import streamlit as st import sounddevice as sd import speech_recognition as sr from huggingface_hub import InferenceClient devices = sd.query_devices() print(devices) if "history" not in st.session_state: st.session_state.history = [] if "pre_prompt_sent" not in st.session_state: st.session_state.pre_prompt_sent = False gatherUsageStats = "false" pre_prompt_text = "eres una IA conductual, tus respuestas serán breves." def recognize_speech(audio_data, show_messages=True): recognizer = sr.Recognizer() audio_recording = sr.AudioFile(audio_data) with audio_recording as source: audio = recognizer.record(source) try: audio_text = recognizer.recognize_google(audio, language="es-ES") if show_messages: st.subheader("Texto Reconocido:") st.write(audio_text) st.success("Reconocimiento de voz completado.") except sr.UnknownValueError: st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?") audio_text = "" except sr.RequestError: st.error("Hablame para comenzar!") audio_text = "" return audio_text def format_prompt(message, history): prompt = "" if not st.session_state.pre_prompt_sent: prompt += f"[INST]{pre_prompt_text}[/INST]" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") temperature = float(temperature) if temperature is not None else 0.9 if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42,) formatted_prompt = format_prompt(audio_text, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) response = "" for response_token in stream: response += response_token.token.text response = ' '.join(response.split()).replace('', '') audio_file = text_to_speech(response, speed=1.3) return response, audio_file def text_to_speech(text, speed=1.3): tts = gTTS(text=text, lang='es') audio_fp = io.BytesIO() tts.write_to_fp(audio_fp) audio_fp.seek(0) return audio_fp def audio_play(audio_fp): st.audio(audio_fp.read(), format="audio/mp3", start_time=0) def display_recognition_result(audio_text, output, audio_file): if audio_text: st.session_state.history.append((audio_text, output)) if audio_file is not None: st.markdown( f"""""", unsafe_allow_html=True) def voice_activity_detection(audio_data): return vad.is_speech(audio_data, sample_rate) def audio_callback(indata, frames, time, status): assert frames == block_size audio_data = indata[::downsample, mapping] audio_data = map(lambda x: (x + 1) / 2, audio_data) audio_data = np.fromiter(audio_data, np.float16) audio_data = audio_data.tobytes() detection = voice_activity_detection(audio_data) print(detection) def start_stream(): stream.start() class Threader(threading.Thread): def __init__(self, *args, **kwargs): threading.Thread.__init__(self, *args, **kwargs) self.start() def run(self): if self.name == 'mythread': print("Started mythread") start_stream() if __name__ == "__main__": vad = webrtcvad.Vad(1) channels = [1] mapping = [c - 1 for c in channels] device_info = sd.query_devices(16, 'input') sample_rate = int(device_info['default_samplerate']) interval_size = 10 downsample = 1 block_size = int(sample_rate * interval_size / 1000) Threader(name='mythread') st.button("Detener Stream") st.text("Esperando entrada de voz...") st.text("Puedes detener el stream manualmente usando el botón 'Detener Stream'.") st.text("Nota: El código actual imprime los resultados de VAD en la consola.") st.text("Puedes personalizar la lógica de VAD según tus necesidades.") st.text("La transcripción de voz y la generación de texto se manejarán una vez que se detecte actividad de voz.") st.text("Inicia la grabación y espera a que aparezcan los resultados.")