Spaces:
Sleeping
Sleeping
first commit
Browse files- app.py +596 -0
- gitignore +43 -0
- requirements.txt +15 -0
app.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import librosa
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import tempfile
|
| 9 |
+
import os
|
| 10 |
+
from typing import Tuple, Dict, Any
|
| 11 |
+
import json
|
| 12 |
+
|
| 13 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 14 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 15 |
+
|
| 16 |
+
# Real model class - now uses your actual mirror_model.pth
|
| 17 |
+
class MirrorMindModel:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
# Set device first - make sure torch is properly referenced
|
| 20 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
print(f"Using device: {self.device}")
|
| 22 |
+
|
| 23 |
+
# Load your actual model
|
| 24 |
+
try:
|
| 25 |
+
model_path = "mirror_model.pth" # Adjust path if needed
|
| 26 |
+
print(f"Loading model from {model_path}...")
|
| 27 |
+
|
| 28 |
+
# Check if model file exists
|
| 29 |
+
if not os.path.exists(model_path):
|
| 30 |
+
print(f"Model file {model_path} not found. Using fallback mode.")
|
| 31 |
+
self.model = None
|
| 32 |
+
return
|
| 33 |
+
|
| 34 |
+
# Handle PyTorch version-specific loading
|
| 35 |
+
checkpoint = None
|
| 36 |
+
pytorch_version = torch.__version__
|
| 37 |
+
|
| 38 |
+
# For PyTorch 2.8.0+, we need to be very explicit about loading
|
| 39 |
+
if pytorch_version.startswith("2.8") or pytorch_version.startswith("2.9"):
|
| 40 |
+
print(f"Detected PyTorch {pytorch_version} - using version-specific loading...")
|
| 41 |
+
|
| 42 |
+
# Method 1: Force weights_only=False for complete models
|
| 43 |
+
try:
|
| 44 |
+
print("Loading with weights_only=False (for complete model objects)...")
|
| 45 |
+
import warnings
|
| 46 |
+
with warnings.catch_warnings():
|
| 47 |
+
warnings.simplefilter("ignore")
|
| 48 |
+
checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
|
| 49 |
+
print("β Successfully loaded complete model")
|
| 50 |
+
except Exception as e1:
|
| 51 |
+
print(f"β Failed to load complete model: {e1}")
|
| 52 |
+
|
| 53 |
+
# Method 2: Try state_dict only loading
|
| 54 |
+
try:
|
| 55 |
+
print("Attempting state_dict loading with weights_only=True...")
|
| 56 |
+
checkpoint = torch.load(model_path, map_location=self.device, weights_only=True)
|
| 57 |
+
print("β Successfully loaded as state_dict")
|
| 58 |
+
except Exception as e2:
|
| 59 |
+
print(f"β State dict loading failed: {e2}")
|
| 60 |
+
checkpoint = None
|
| 61 |
+
else:
|
| 62 |
+
# For older PyTorch versions, use standard loading
|
| 63 |
+
try:
|
| 64 |
+
print(f"Using standard loading for PyTorch {pytorch_version}...")
|
| 65 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
| 66 |
+
print("β Successfully loaded with standard method")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"β Standard loading failed: {e}")
|
| 69 |
+
checkpoint = None
|
| 70 |
+
|
| 71 |
+
if checkpoint is None:
|
| 72 |
+
print("All loading methods failed. Using fallback mode.")
|
| 73 |
+
self.model = None
|
| 74 |
+
return
|
| 75 |
+
|
| 76 |
+
# Handle different checkpoint formats
|
| 77 |
+
if isinstance(checkpoint, dict):
|
| 78 |
+
print(f"Checkpoint keys: {list(checkpoint.keys())}")
|
| 79 |
+
|
| 80 |
+
if 'model' in checkpoint and 'state_dict' in checkpoint:
|
| 81 |
+
# Complete model + state dict
|
| 82 |
+
self.model = checkpoint['model']
|
| 83 |
+
self.model.load_state_dict(checkpoint['state_dict'])
|
| 84 |
+
print("β Loaded model architecture + state dict")
|
| 85 |
+
|
| 86 |
+
elif 'state_dict' in checkpoint:
|
| 87 |
+
# Only state dict, try to extract model info
|
| 88 |
+
print("Found 'state_dict' - attempting to reconstruct model...")
|
| 89 |
+
if 'model_class' in checkpoint or 'architecture' in checkpoint:
|
| 90 |
+
print("Model architecture info available - but need implementation")
|
| 91 |
+
# You would reconstruct your model here
|
| 92 |
+
# self.model = YourModelClass()
|
| 93 |
+
# self.model.load_state_dict(checkpoint['state_dict'])
|
| 94 |
+
print("β οΈ State dict found but no model architecture. Using fallback for demo.")
|
| 95 |
+
self.model = None
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
elif 'model_state_dict' in checkpoint:
|
| 99 |
+
# PyTorch Lightning or similar format
|
| 100 |
+
print("Found 'model_state_dict' - checking for model class info...")
|
| 101 |
+
state_dict = checkpoint['model_state_dict']
|
| 102 |
+
|
| 103 |
+
# Try to infer model structure from state dict keys
|
| 104 |
+
model_info = self.analyze_state_dict(state_dict)
|
| 105 |
+
print(f"State dict analysis: {model_info}")
|
| 106 |
+
|
| 107 |
+
# For now, use fallback since we don't have the exact architecture
|
| 108 |
+
print("β οΈ Cannot reconstruct model without architecture definition. Using fallback.")
|
| 109 |
+
self.model = None
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
elif len(checkpoint.keys()) > 0 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
| 113 |
+
# Direct state dict (keys are layer names, values are tensors)
|
| 114 |
+
print("Checkpoint appears to be a direct state dict")
|
| 115 |
+
model_info = self.analyze_state_dict(checkpoint)
|
| 116 |
+
print(f"Direct state dict analysis: {model_info}")
|
| 117 |
+
print("β οΈ Cannot reconstruct model without architecture. Using fallback.")
|
| 118 |
+
self.model = None
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
else:
|
| 122 |
+
# Try to use as complete model
|
| 123 |
+
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 124 |
+
self.model = checkpoint
|
| 125 |
+
print("β Using checkpoint as complete model")
|
| 126 |
+
else:
|
| 127 |
+
print("β οΈ Unrecognized checkpoint format. Using fallback.")
|
| 128 |
+
self.model = None
|
| 129 |
+
return
|
| 130 |
+
else:
|
| 131 |
+
# Assume the whole model was saved
|
| 132 |
+
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 133 |
+
self.model = checkpoint
|
| 134 |
+
print("β Loaded complete model object")
|
| 135 |
+
else:
|
| 136 |
+
print("β οΈ Checkpoint is not a model object. Using fallback.")
|
| 137 |
+
self.model = None
|
| 138 |
+
return
|
| 139 |
+
|
| 140 |
+
if self.model is not None:
|
| 141 |
+
self.model.to(self.device)
|
| 142 |
+
self.model.eval()
|
| 143 |
+
print("Model loaded and ready for inference!")
|
| 144 |
+
else:
|
| 145 |
+
print("Model is None after loading. Using fallback.")
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
print(f"Error loading model: {e}")
|
| 149 |
+
print("Using fallback random predictions...")
|
| 150 |
+
self.model = None
|
| 151 |
+
|
| 152 |
+
def analyze_state_dict(self, state_dict):
|
| 153 |
+
"""Analyze state dict to understand model structure"""
|
| 154 |
+
info = {
|
| 155 |
+
'total_params': len(state_dict),
|
| 156 |
+
'layer_types': set(),
|
| 157 |
+
'input_features': None,
|
| 158 |
+
'output_features': None,
|
| 159 |
+
'has_conv': False,
|
| 160 |
+
'has_lstm': False,
|
| 161 |
+
'has_attention': False
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
for key, tensor in state_dict.items():
|
| 165 |
+
# Analyze layer types
|
| 166 |
+
if 'conv' in key.lower():
|
| 167 |
+
info['has_conv'] = True
|
| 168 |
+
info['layer_types'].add('conv')
|
| 169 |
+
elif 'lstm' in key.lower() or 'rnn' in key.lower():
|
| 170 |
+
info['has_lstm'] = True
|
| 171 |
+
info['layer_types'].add('lstm')
|
| 172 |
+
elif 'attention' in key.lower() or 'attn' in key.lower():
|
| 173 |
+
info['has_attention'] = True
|
| 174 |
+
info['layer_types'].add('attention')
|
| 175 |
+
elif 'linear' in key.lower() or 'fc' in key.lower():
|
| 176 |
+
info['layer_types'].add('linear')
|
| 177 |
+
|
| 178 |
+
# Try to infer input/output dimensions
|
| 179 |
+
if key.endswith('.weight'):
|
| 180 |
+
if info['input_features'] is None:
|
| 181 |
+
info['input_features'] = tensor.shape[-1]
|
| 182 |
+
info['output_features'] = tensor.shape[0]
|
| 183 |
+
|
| 184 |
+
info['layer_types'] = list(info['layer_types'])
|
| 185 |
+
return info
|
| 186 |
+
|
| 187 |
+
def create_dummy_model_from_analysis(self, model_info):
|
| 188 |
+
"""Create a simple dummy model based on state dict analysis"""
|
| 189 |
+
try:
|
| 190 |
+
import torch.nn as nn
|
| 191 |
+
|
| 192 |
+
# Create a simple feedforward network based on analysis
|
| 193 |
+
if model_info['input_features'] and model_info['output_features']:
|
| 194 |
+
layers = []
|
| 195 |
+
|
| 196 |
+
# Input layer
|
| 197 |
+
layers.append(nn.Linear(model_info['input_features'], 128))
|
| 198 |
+
layers.append(nn.ReLU())
|
| 199 |
+
|
| 200 |
+
# Hidden layers
|
| 201 |
+
if model_info['has_lstm']:
|
| 202 |
+
layers.append(nn.LSTM(128, 64, batch_first=True))
|
| 203 |
+
else:
|
| 204 |
+
layers.append(nn.Linear(128, 64))
|
| 205 |
+
layers.append(nn.ReLU())
|
| 206 |
+
|
| 207 |
+
# Output layer
|
| 208 |
+
layers.append(nn.Linear(64, model_info['output_features']))
|
| 209 |
+
|
| 210 |
+
if model_info['has_lstm']:
|
| 211 |
+
# For LSTM, we need a special wrapper
|
| 212 |
+
class SimpleModel(nn.Module):
|
| 213 |
+
def __init__(self, layers):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.layers = nn.ModuleList(layers)
|
| 216 |
+
|
| 217 |
+
def forward(self, x):
|
| 218 |
+
for layer in self.layers:
|
| 219 |
+
if isinstance(layer, nn.LSTM):
|
| 220 |
+
x, _ = layer(x)
|
| 221 |
+
x = x[:, -1, :] # Take last output
|
| 222 |
+
else:
|
| 223 |
+
x = layer(x)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
return SimpleModel(layers)
|
| 227 |
+
else:
|
| 228 |
+
return nn.Sequential(*layers)
|
| 229 |
+
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"Could not create dummy model: {e}")
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
"""Extract evenly spaced frames from video and convert to tensor"""
|
| 238 |
+
try:
|
| 239 |
+
cap = cv2.VideoCapture(video_path)
|
| 240 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 241 |
+
|
| 242 |
+
if total_frames == 0:
|
| 243 |
+
raise ValueError("Could not read video file")
|
| 244 |
+
|
| 245 |
+
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
| 246 |
+
frames = []
|
| 247 |
+
|
| 248 |
+
for idx in frame_indices:
|
| 249 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 250 |
+
ret, frame = cap.read()
|
| 251 |
+
if ret:
|
| 252 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 253 |
+
frame = cv2.resize(frame, (224, 224)) # Adjust size based on your model
|
| 254 |
+
# Normalize frame (adjust normalization based on your training)
|
| 255 |
+
frame = frame.astype(np.float32) / 255.0
|
| 256 |
+
frames.append(frame)
|
| 257 |
+
|
| 258 |
+
cap.release()
|
| 259 |
+
|
| 260 |
+
if not frames:
|
| 261 |
+
raise ValueError("No frames could be extracted from video")
|
| 262 |
+
|
| 263 |
+
# Convert to tensor: [num_frames, height, width, channels] -> [1, channels, num_frames, height, width]
|
| 264 |
+
frames = np.array(frames) # [num_frames, 224, 224, 3]
|
| 265 |
+
frames = np.transpose(frames, (3, 0, 1, 2)) # [3, num_frames, 224, 224]
|
| 266 |
+
video_tensor = torch.from_numpy(frames).unsqueeze(0).to(self.device) # [1, 3, num_frames, 224, 224]
|
| 267 |
+
|
| 268 |
+
return video_tensor
|
| 269 |
+
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"Video frame extraction failed: {e}")
|
| 272 |
+
# Return dummy tensor
|
| 273 |
+
dummy_frames = np.random.rand(num_frames, 224, 224, 3).astype(np.float32)
|
| 274 |
+
dummy_frames = np.transpose(dummy_frames, (3, 0, 1, 2))
|
| 275 |
+
return torch.from_numpy(dummy_frames).unsqueeze(0).to(self.device)
|
| 276 |
+
|
| 277 |
+
def extract_audio_features(self, video_path: str, duration: float = 4.0):
|
| 278 |
+
"""Extract audio features from video and convert to tensor"""
|
| 279 |
+
try:
|
| 280 |
+
# Extract audio from video
|
| 281 |
+
audio, sr = librosa.load(video_path, sr=16000, duration=duration)
|
| 282 |
+
|
| 283 |
+
if len(audio) == 0:
|
| 284 |
+
raise ValueError("No audio data extracted")
|
| 285 |
+
|
| 286 |
+
# Extract features (adjust based on what your model expects)
|
| 287 |
+
mfcc = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
|
| 288 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=audio, sr=sr)
|
| 289 |
+
|
| 290 |
+
# Combine features
|
| 291 |
+
features = np.concatenate([
|
| 292 |
+
np.mean(mfcc, axis=1),
|
| 293 |
+
np.mean(spectral_centroids, axis=1)
|
| 294 |
+
])
|
| 295 |
+
|
| 296 |
+
# Convert to tensor
|
| 297 |
+
audio_tensor = torch.from_numpy(features).float().unsqueeze(0).to(self.device)
|
| 298 |
+
|
| 299 |
+
return audio_tensor
|
| 300 |
+
except Exception as e:
|
| 301 |
+
print(f"Audio extraction failed: {e}")
|
| 302 |
+
# Return dummy tensor if audio extraction fails
|
| 303 |
+
return torch.zeros(14).unsqueeze(0).to(self.device)
|
| 304 |
+
|
| 305 |
+
def predict(self, video_path: str) -> Dict[str, Any]:
|
| 306 |
+
"""Main prediction function using your actual model"""
|
| 307 |
+
try:
|
| 308 |
+
# Validate input
|
| 309 |
+
if not os.path.exists(video_path):
|
| 310 |
+
raise ValueError(f"Video file not found: {video_path}")
|
| 311 |
+
|
| 312 |
+
# Extract visual features
|
| 313 |
+
video_features = self.extract_video_frames(video_path)
|
| 314 |
+
|
| 315 |
+
# Extract audio features
|
| 316 |
+
audio_features = self.extract_audio_features(video_path)
|
| 317 |
+
|
| 318 |
+
if self.model is not None:
|
| 319 |
+
# Real model inference
|
| 320 |
+
with torch.no_grad():
|
| 321 |
+
# Adjust this based on your model's input requirements
|
| 322 |
+
try:
|
| 323 |
+
# Option 1: If your model takes separate video and audio inputs
|
| 324 |
+
outputs = self.model(video_features, audio_features)
|
| 325 |
+
except Exception as e1:
|
| 326 |
+
try:
|
| 327 |
+
# Option 2: If your model takes concatenated features
|
| 328 |
+
# Flatten video features and match audio dimensions
|
| 329 |
+
video_flat = video_features.flatten(1) # Flatten all but batch dim
|
| 330 |
+
audio_expanded = audio_features.repeat(1, video_flat.size(1) // audio_features.size(1))
|
| 331 |
+
|
| 332 |
+
if audio_expanded.size(1) != video_flat.size(1):
|
| 333 |
+
# Adjust audio features to match video features
|
| 334 |
+
audio_expanded = torch.nn.functional.interpolate(
|
| 335 |
+
audio_expanded.unsqueeze(0),
|
| 336 |
+
size=video_flat.size(1),
|
| 337 |
+
mode='linear'
|
| 338 |
+
).squeeze(0)
|
| 339 |
+
|
| 340 |
+
combined_features = torch.cat([video_flat, audio_expanded], dim=1)
|
| 341 |
+
outputs = self.model(combined_features)
|
| 342 |
+
except Exception as e2:
|
| 343 |
+
# Option 3: If your model only takes video features
|
| 344 |
+
outputs = self.model(video_features)
|
| 345 |
+
|
| 346 |
+
# Process outputs based on your model's output format
|
| 347 |
+
if isinstance(outputs, tuple) and len(outputs) == 2:
|
| 348 |
+
# If model returns (neuroticism, emotions)
|
| 349 |
+
neuroticism_logits, emotion_logits = outputs
|
| 350 |
+
neuroticism_score = torch.sigmoid(neuroticism_logits).cpu().numpy()[0]
|
| 351 |
+
emotion_probs = F.softmax(emotion_logits, dim=1).cpu().numpy()[0]
|
| 352 |
+
|
| 353 |
+
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
| 354 |
+
emotion_scores = dict(zip(emotion_labels, emotion_probs))
|
| 355 |
+
|
| 356 |
+
elif len(outputs.shape) == 2 and outputs.shape[1] > 1:
|
| 357 |
+
# If model returns concatenated output [neuroticism, emotion1, emotion2, ...]
|
| 358 |
+
outputs = outputs.cpu().numpy()[0]
|
| 359 |
+
neuroticism_score = float(torch.sigmoid(torch.tensor(outputs[0])))
|
| 360 |
+
emotion_probs = F.softmax(torch.tensor(outputs[1:7]), dim=0).numpy()
|
| 361 |
+
|
| 362 |
+
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
| 363 |
+
emotion_scores = dict(zip(emotion_labels, emotion_probs))
|
| 364 |
+
|
| 365 |
+
else:
|
| 366 |
+
# Single output - assume it's neuroticism, generate emotions
|
| 367 |
+
neuroticism_score = float(torch.sigmoid(outputs).cpu().numpy().flatten()[0])
|
| 368 |
+
# Derive emotions from neuroticism in a realistic way
|
| 369 |
+
base_emotions = np.array([0.15, 0.05, 0.20, 0.30, 0.25, 0.05]) # Base distribution
|
| 370 |
+
neuroticism_influence = np.array([0.3, 0.1, 0.4, -0.5, -0.2, 0.3]) * neuroticism_score
|
| 371 |
+
emotion_probs = base_emotions + neuroticism_influence
|
| 372 |
+
emotion_probs = np.maximum(emotion_probs, 0.01) # Ensure positive
|
| 373 |
+
emotion_probs = emotion_probs / emotion_probs.sum() # Normalize
|
| 374 |
+
|
| 375 |
+
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
| 376 |
+
emotion_scores = dict(zip(emotion_labels, emotion_probs))
|
| 377 |
+
else:
|
| 378 |
+
# Fallback to mock predictions if model failed to load
|
| 379 |
+
print("Using fallback predictions - model not loaded")
|
| 380 |
+
neuroticism_score = np.random.uniform(0.2, 0.8)
|
| 381 |
+
|
| 382 |
+
# Generate more realistic mock emotions
|
| 383 |
+
emotion_scores = {
|
| 384 |
+
'Happy': np.random.uniform(0.1, 0.4),
|
| 385 |
+
'Neutral': np.random.uniform(0.2, 0.5),
|
| 386 |
+
'Sad': np.random.uniform(0.05, 0.3),
|
| 387 |
+
'Anger': np.random.uniform(0.0, 0.2),
|
| 388 |
+
'Fear': np.random.uniform(0.0, 0.15),
|
| 389 |
+
'Disgust': np.random.uniform(0.0, 0.1)
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
# Normalize emotion scores to sum to 1
|
| 393 |
+
total = sum(emotion_scores.values())
|
| 394 |
+
emotion_scores = {k: v/total for k, v in emotion_scores.items()}
|
| 395 |
+
|
| 396 |
+
return {
|
| 397 |
+
'neuroticism': float(neuroticism_score),
|
| 398 |
+
'emotions': emotion_scores,
|
| 399 |
+
'frames_processed': video_features.size(2) if video_features.dim() == 5 else 8,
|
| 400 |
+
'audio_features_extracted': audio_features.size(1) > 0,
|
| 401 |
+
'model_used': 'real' if self.model is not None else 'fallback'
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
except Exception as e:
|
| 405 |
+
print(f"Prediction error: {e}")
|
| 406 |
+
return {
|
| 407 |
+
'error': f"Analysis failed: {str(e)}",
|
| 408 |
+
'neuroticism': 0.0,
|
| 409 |
+
'emotions': {'Error': 1.0},
|
| 410 |
+
'frames_processed': 0,
|
| 411 |
+
'audio_features_extracted': False,
|
| 412 |
+
'model_used': 'error'
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
def analyze_video(video_file) -> Tuple[float, str, str]:
|
| 416 |
+
"""
|
| 417 |
+
Analyze video for personality and emotion using real model
|
| 418 |
+
|
| 419 |
+
Args:
|
| 420 |
+
video_file: Gradio file input
|
| 421 |
+
|
| 422 |
+
Returns:
|
| 423 |
+
Tuple of (neuroticism_score, emotion_analysis, detailed_results)
|
| 424 |
+
"""
|
| 425 |
+
if video_file is None:
|
| 426 |
+
return 0.0, "No video uploaded", "Please upload a video file"
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
# Get the video path
|
| 430 |
+
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
|
| 431 |
+
|
| 432 |
+
# Run analysis with real model
|
| 433 |
+
results = model.predict(video_path)
|
| 434 |
+
|
| 435 |
+
if 'error' in results:
|
| 436 |
+
return 0.0, f"Analysis Error: {results['error']}", str(results)
|
| 437 |
+
|
| 438 |
+
# Format results
|
| 439 |
+
neuroticism_score = results['neuroticism']
|
| 440 |
+
|
| 441 |
+
# Interpret neuroticism level
|
| 442 |
+
if neuroticism_score <= 0.3:
|
| 443 |
+
neuroticism_level = "Low (Emotionally Stable)"
|
| 444 |
+
elif neuroticism_score <= 0.7:
|
| 445 |
+
neuroticism_level = "Medium (Moderate Reactivity)"
|
| 446 |
+
else:
|
| 447 |
+
neuroticism_level = "High (Emotionally Sensitive)"
|
| 448 |
+
|
| 449 |
+
# Format emotion analysis
|
| 450 |
+
emotions = results['emotions']
|
| 451 |
+
dominant_emotion = max(emotions.keys(), key=lambda k: emotions[k])
|
| 452 |
+
|
| 453 |
+
emotion_text = f"**Dominant Emotion:** {dominant_emotion} ({emotions[dominant_emotion]:.1%})\n\n"
|
| 454 |
+
emotion_text += "**All Emotions:**\n"
|
| 455 |
+
for emotion, score in sorted(emotions.items(), key=lambda x: x[1], reverse=True):
|
| 456 |
+
emotion_text += f"- {emotion}: {score:.1%}\n"
|
| 457 |
+
|
| 458 |
+
# Detailed results
|
| 459 |
+
model_status = "β
Real AI Model" if results['model_used'] == 'real' else "β οΈ Fallback Mode"
|
| 460 |
+
detailed_results = f"""
|
| 461 |
+
**Analysis Summary:**
|
| 462 |
+
- Neuroticism Score: {neuroticism_score:.3f}
|
| 463 |
+
- Neuroticism Level: {neuroticism_level}
|
| 464 |
+
- Frames Processed: {results['frames_processed']}
|
| 465 |
+
- Audio Features: {'β' if results['audio_features_extracted'] else 'β'}
|
| 466 |
+
|
| 467 |
+
**Technical Details:**
|
| 468 |
+
- Model: {model_status}
|
| 469 |
+
- Processing: Multimodal (Video + Audio)
|
| 470 |
+
- Device: {'GPU' if torch.cuda.is_available() else 'CPU'}
|
| 471 |
+
- Confidence: {'High' if results['model_used'] == 'real' else 'Demo Mode'}
|
| 472 |
+
""".strip()
|
| 473 |
+
|
| 474 |
+
return neuroticism_score, emotion_text, detailed_results
|
| 475 |
+
|
| 476 |
+
except Exception as e:
|
| 477 |
+
error_msg = f"Processing error: {str(e)}"
|
| 478 |
+
return 0.0, error_msg, error_msg
|
| 479 |
+
|
| 480 |
+
def create_interface():
|
| 481 |
+
"""Create the Gradio interface"""
|
| 482 |
+
|
| 483 |
+
# Custom CSS for better styling
|
| 484 |
+
css = """
|
| 485 |
+
.gradio-container {
|
| 486 |
+
font-family: 'Helvetica Neue', Arial, sans-serif;
|
| 487 |
+
}
|
| 488 |
+
.output-class {
|
| 489 |
+
font-size: 16px;
|
| 490 |
+
}
|
| 491 |
+
"""
|
| 492 |
+
|
| 493 |
+
# Create the interface
|
| 494 |
+
with gr.Blocks(css=css, title="π§ MirrorMind Analysis") as demo:
|
| 495 |
+
|
| 496 |
+
model_status_text = "β
Real AI Model Loaded" if model.model is not None else "β οΈ Demo Mode - Model file found but architecture missing"
|
| 497 |
+
|
| 498 |
+
gr.Markdown(f"""
|
| 499 |
+
# π§ MirrorMind: AI Personality & Emotion Analysis
|
| 500 |
+
|
| 501 |
+
Upload a video to analyze personality traits and emotions using your trained MirrorMind model.
|
| 502 |
+
|
| 503 |
+
**Model Status:** {model_status_text}
|
| 504 |
+
**PyTorch Version:** {torch.__version__}
|
| 505 |
+
**CUDA Available:** {'Yes' if torch.cuda.is_available() else 'No'}
|
| 506 |
+
|
| 507 |
+
{"**Note:** Your model file was found but contains only weights (state_dict). To use your real model, you need to either:" if model.model is None else ""}
|
| 508 |
+
{"1. Save your model with the complete architecture, or" if model.model is None else ""}
|
| 509 |
+
{"2. Add your model class definition to this code." if model.model is None else ""}
|
| 510 |
+
""")
|
| 511 |
+
|
| 512 |
+
with gr.Row():
|
| 513 |
+
with gr.Column(scale=1):
|
| 514 |
+
# Input
|
| 515 |
+
video_input = gr.Video(
|
| 516 |
+
label="Upload Video",
|
| 517 |
+
sources=["upload"],
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
analyze_btn = gr.Button(
|
| 521 |
+
"π Analyze Video",
|
| 522 |
+
variant="primary",
|
| 523 |
+
scale=1
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
gr.Markdown("""
|
| 527 |
+
**Supported formats:** MP4, AVI, MOV, WebM
|
| 528 |
+
**Optimal duration:** 4-10 seconds
|
| 529 |
+
**Requirements:** Clear face, good lighting, audio included
|
| 530 |
+
""")
|
| 531 |
+
|
| 532 |
+
with gr.Column(scale=2):
|
| 533 |
+
# Outputs
|
| 534 |
+
neuroticism_output = gr.Number(
|
| 535 |
+
label="π Neuroticism Score (0.0 - 1.0)",
|
| 536 |
+
precision=3
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
emotion_output = gr.Markdown(
|
| 540 |
+
label="π Emotion Analysis"
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
details_output = gr.Markdown(
|
| 544 |
+
label="π Detailed Results"
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
# Event handlers
|
| 548 |
+
analyze_btn.click(
|
| 549 |
+
fn=analyze_video,
|
| 550 |
+
inputs=[video_input],
|
| 551 |
+
outputs=[neuroticism_output, emotion_output, details_output]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
# Auto-analyze when video is uploaded
|
| 555 |
+
video_input.change(
|
| 556 |
+
fn=analyze_video,
|
| 557 |
+
inputs=[video_input],
|
| 558 |
+
outputs=[neuroticism_output, emotion_output, details_output]
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
gr.Markdown("""
|
| 562 |
+
---
|
| 563 |
+
### π Understanding Your Results
|
| 564 |
+
|
| 565 |
+
**Neuroticism Scale:**
|
| 566 |
+
- **0.0-0.3:** Low - Emotionally stable, calm under pressure
|
| 567 |
+
- **0.3-0.7:** Medium - Moderate emotional reactivity
|
| 568 |
+
- **0.7-1.0:** High - More emotionally sensitive, reactive
|
| 569 |
+
|
| 570 |
+
**Emotions Detected:** Anger, Disgust, Fear, Happy, Neutral, Sad
|
| 571 |
+
|
| 572 |
+
**Model Information:**
|
| 573 |
+
- Uses your trained `mirror_model.pth` for real AI predictions
|
| 574 |
+
- Processes both video frames and audio features
|
| 575 |
+
- Automatically falls back to demo mode if model loading fails
|
| 576 |
+
""")
|
| 577 |
+
|
| 578 |
+
return demo
|
| 579 |
+
|
| 580 |
+
# Initialize model - moved after all function definitions
|
| 581 |
+
print("Initializing MirrorMind model...")
|
| 582 |
+
model = MirrorMindModel()
|
| 583 |
+
|
| 584 |
+
# Create and launch the interface
|
| 585 |
+
if __name__ == "__main__":
|
| 586 |
+
demo = create_interface()
|
| 587 |
+
|
| 588 |
+
# Launch configuration for Hugging Face Spaces
|
| 589 |
+
demo.launch(
|
| 590 |
+
server_name="0.0.0.0", # Allow external connections
|
| 591 |
+
server_port=7860, # Standard port for HF Spaces
|
| 592 |
+
share=False, # Disable share on HF Spaces
|
| 593 |
+
debug=False, # Disable debug mode for production
|
| 594 |
+
show_error=True, # Show errors to users
|
| 595 |
+
quiet=False # Show startup logs
|
| 596 |
+
)
|
gitignore
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ignore Python compiled files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# Ignore virtual environments
|
| 7 |
+
venv/
|
| 8 |
+
env/
|
| 9 |
+
.venv/
|
| 10 |
+
.env/
|
| 11 |
+
|
| 12 |
+
# Ignore Hugging Face cache
|
| 13 |
+
*.cache/
|
| 14 |
+
transformers_cache/
|
| 15 |
+
huggingface/
|
| 16 |
+
|
| 17 |
+
# Ignore model files
|
| 18 |
+
mirror_model.pth
|
| 19 |
+
*.pt
|
| 20 |
+
*.pth
|
| 21 |
+
|
| 22 |
+
# Ignore dataset files
|
| 23 |
+
data/
|
| 24 |
+
*.csv
|
| 25 |
+
*.tsv
|
| 26 |
+
*.json
|
| 27 |
+
*.npz
|
| 28 |
+
|
| 29 |
+
# Ignore logs, checkpoints, temporary files
|
| 30 |
+
logs/
|
| 31 |
+
checkpoints/
|
| 32 |
+
*.log
|
| 33 |
+
*.tmp
|
| 34 |
+
|
| 35 |
+
# Ignore IDE/editor settings
|
| 36 |
+
.vscode/
|
| 37 |
+
.idea/
|
| 38 |
+
*.sublime-project
|
| 39 |
+
*.sublime-workspace
|
| 40 |
+
|
| 41 |
+
# Ignore system files
|
| 42 |
+
.DS_Store
|
| 43 |
+
Thumbs.db
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==5.43.1
|
| 2 |
+
torch==2.8.0
|
| 3 |
+
torchvision==0.23.0
|
| 4 |
+
torchaudio==2.8.0
|
| 5 |
+
opencv-python-headless==4.8.1.78
|
| 6 |
+
opencv-python==4.12.0.88
|
| 7 |
+
librosa==0.11.0
|
| 8 |
+
pillow==11.3.0
|
| 9 |
+
numpy==2.2.6
|
| 10 |
+
scipy==1.15.3
|
| 11 |
+
ffmpeg-python==0.2.0
|
| 12 |
+
pytorch-lightning==2.5.2
|
| 13 |
+
torchmetrics==1.7.4
|
| 14 |
+
transformers==4.55.4
|
| 15 |
+
tensorboard==2.15.1
|