File size: 5,961 Bytes
edc850c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<!DOCTYPE html>
<html lang="hi-IN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Gauss-Jordan Method Se Equations Solve Karna (x,y,z)</title>
    <style>
        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            line-height: 1.8;
            margin: 0;
            padding: 20px;
            background-color: #fff0f5; /* LavenderBlush background */
            color: #333;
        }
        .container {
            max-width: 800px;
            margin: auto;
            background: #fff;
            padding: 25px;
            border-radius: 8px;
            box-shadow: 0 0 15px rgba(0,0,0,0.1);
        }
        h1, h2, h3 {
            color: #c71585; /* MediumVioletRed */
            border-bottom: 2px solid #ff69b4; /* HotPink border */
            padding-bottom: 5px;
        }
        h1 {
            text-align: center;
            font-size: 2em;
        }
        h2 {
            font-size: 1.5em;
            margin-top: 30px;
        }
        h3 {
            font-size: 1.2em;
            margin-top: 20px;
            color: #ff69b4; /* HotPink */
        }
        p {
            margin-bottom: 15px;
        }
        .equations, .matrix-display {
            background-color: #ffe4e1; /* MistyRose */
            border: 1px solid #ffb6c1; /* LightPink border */
            padding: 15px;
            border-radius: 5px;
            margin-bottom: 20px;
            font-family: 'Courier New', Courier, monospace;
            font-size: 1.1em;
            overflow-x: auto;
            white-space: pre;
        }
        .matrix-display code {
            display: block;
        }
        .solution {
            background-color: #f5fffa; /* MintCream */
            border: 1px solid #90ee90; /* LightGreen border */
            padding: 15px;
            border-radius: 5px;
            font-size: 1.1em;
            font-weight: bold;
            color: #32cd32; /* LimeGreen */
        }
        .operation {
            font-style: italic;
            color: #8a2be2; /* BlueViolet */
        }
        .highlight {
            color: #ff4500; /* OrangeRed for pivot */
            font-weight: bold;
        }
        .comment {
            color: #20b2aa; /* LightSeaGreen for comments */
            font-style: italic;
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>Gauss-Jordan Method (x,y,z Variables)</h1>
        <h2>(a) Sawaal (Problem Statement)</h2>
        <p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
        <div class="equations">
            x + 2y +  z =  3
           2x + 3y + 3z = 10
           3x -  y + 2z = 13
        </div>

        <h2>Gauss-Jordan Elimination Ke Steps</h2>
        <p>Sabse pehle, augmented matrix banayenge:</p>
        <div class="matrix-display"><code>[ 1   2   1 |  3 ]
[ 2   3   3 | 10 ]
[ 3  -1   2 | 13 ]</code></div>
        <p>Pehla pivot (R1,C1) already 1 hai, bahut accha!</p>

        <h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
        <p class="operation">R2 β†’ R2 - 2*R1</p>
        <p class="operation">R3 β†’ R3 - 3*R1</p>
        <div class="matrix-display"><code>[ <span class="highlight">1</span>   2   1 |  3 ]
[ 0  -1   1 |  4 ]  <span class="comment"><-- R2: [2-2*1, 3-2*2, 3-2*1 | 10-2*3] = [0, -1, 1 | 4]</span>
[ 0  -7  -1 |  4 ]  <span class="comment"><-- R3: [3-3*1, -1-3*2, 2-3*1 | 13-3*3] = [0, -7, -1 | 4]</span></code></div>

        <h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
        <p>Ab R2,C2 wale element (-1) ko 1 banana hai.</p>
        <p class="operation">R2 β†’ R2 * (-1)</p>
        <div class="matrix-display"><code>[ 1   2   1 |  3 ]
[ 0   <span class="highlight">1</span>  -1 | -4 ]
[ 0  -7  -1 |  4 ]</code></div>

        <h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
        <p class="operation">R1 β†’ R1 - 2*R2</p>
        <p class="operation">R3 β†’ R3 + 7*R2</p>
        <div class="matrix-display"><code>[ 1   0   3 |  11 ]  <span class="comment"><-- R1: [1-2*0, 2-2*1, 1-2*(-1) | 3-2*(-4)] = [1, 0, 3 | 11]</span>
[ 0   1  -1 |  -4 ]
[ 0   0  -8 | -24 ]  <span class="comment"><-- R3: [0+7*0, -7+7*1, -1+7*(-1) | 4+7*(-4)] = [0, 0, -8 | -24]</span></code></div>

        <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
        <p>Ab R3,C3 wale element (-8) ko 1 banana hai.</p>
        <p class="operation">R3 β†’ R3 / (-8)</p>
        <div class="matrix-display"><code>[ 1   0   3 |  11 ]
[ 0   1  -1 |  -4 ]
[ 0   0   <span class="highlight">1</span> |   3 ]</code></div>

        <h3>Step 5: Teesre pivot ke upar zeros banana</h3>
        <p class="operation">R1 β†’ R1 - 3*R3</p>
        <p class="operation">R2 β†’ R2 + R3</p>
        <div class="matrix-display"><code>[ 1   0   0 |   2 ]  <span class="comment"><-- R1: [1-3*0, 0-3*0, 3-3*1 | 11-3*3] = [1, 0, 0 | 2]</span>
[ 0   1   0 |  -1 ]  <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -4+3] = [0, 1, 0 | -1]</span>
[ 0   0   1 |   3 ]</code></div>
        <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>

        <h2>Hal (Solution)</h2>
        <p>RREF matrix se humein solution milta hai:</p>
        <div class="solution">
            x =  2 <br>
            y = -1 <br>
            z =  3
        </div>

        <h2>Jaanch (Verification)</h2>
        <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
        
        <h3>Equation 1: x + 2y + z = 3</h3>
        <p>(2) + 2(-1) + (3) = 2 - 2 + 3 = 0 + 3 = <strong>3</strong> (Sahi hai!)</p>

        <h3>Equation 2: 2x + 3y + 3z = 10</h3>
        <p>2(2) + 3(-1) + 3(3) = 4 - 3 + 9 = 1 + 9 = <strong>10</strong> (Sahi hai!)</p>

        <h3>Equation 3: 3x - y + 2z = 13</h3>
        <p>3(2) - (-1) + 2(3) = 6 + 1 + 6 = 7 + 6 = <strong>13</strong> (Sahi hai!)</p>
        
        <p>Solution bilkul sahi hai! Ekdum mast!</p>
    </div>
</body>
</html>