Spaces:
Running
Running
File size: 5,961 Bytes
edc850c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gauss-Jordan Method Se Equations Solve Karna (x,y,z)</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.8;
margin: 0;
padding: 20px;
background-color: #fff0f5; /* LavenderBlush background */
color: #333;
}
.container {
max-width: 800px;
margin: auto;
background: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 0 15px rgba(0,0,0,0.1);
}
h1, h2, h3 {
color: #c71585; /* MediumVioletRed */
border-bottom: 2px solid #ff69b4; /* HotPink border */
padding-bottom: 5px;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
h3 {
font-size: 1.2em;
margin-top: 20px;
color: #ff69b4; /* HotPink */
}
p {
margin-bottom: 15px;
}
.equations, .matrix-display {
background-color: #ffe4e1; /* MistyRose */
border: 1px solid #ffb6c1; /* LightPink border */
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
font-family: 'Courier New', Courier, monospace;
font-size: 1.1em;
overflow-x: auto;
white-space: pre;
}
.matrix-display code {
display: block;
}
.solution {
background-color: #f5fffa; /* MintCream */
border: 1px solid #90ee90; /* LightGreen border */
padding: 15px;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #32cd32; /* LimeGreen */
}
.operation {
font-style: italic;
color: #8a2be2; /* BlueViolet */
}
.highlight {
color: #ff4500; /* OrangeRed for pivot */
font-weight: bold;
}
.comment {
color: #20b2aa; /* LightSeaGreen for comments */
font-style: italic;
}
</style>
</head>
<body>
<div class="container">
<h1>Gauss-Jordan Method (x,y,z Variables)</h1>
<h2>(a) Sawaal (Problem Statement)</h2>
<p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
<div class="equations">
x + 2y + z = 3
2x + 3y + 3z = 10
3x - y + 2z = 13
</div>
<h2>Gauss-Jordan Elimination Ke Steps</h2>
<p>Sabse pehle, augmented matrix banayenge:</p>
<div class="matrix-display"><code>[ 1 2 1 | 3 ]
[ 2 3 3 | 10 ]
[ 3 -1 2 | 13 ]</code></div>
<p>Pehla pivot (R1,C1) already 1 hai, bahut accha!</p>
<h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
<p class="operation">R2 β R2 - 2*R1</p>
<p class="operation">R3 β R3 - 3*R1</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> 2 1 | 3 ]
[ 0 -1 1 | 4 ] <span class="comment"><-- R2: [2-2*1, 3-2*2, 3-2*1 | 10-2*3] = [0, -1, 1 | 4]</span>
[ 0 -7 -1 | 4 ] <span class="comment"><-- R3: [3-3*1, -1-3*2, 2-3*1 | 13-3*3] = [0, -7, -1 | 4]</span></code></div>
<h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
<p>Ab R2,C2 wale element (-1) ko 1 banana hai.</p>
<p class="operation">R2 β R2 * (-1)</p>
<div class="matrix-display"><code>[ 1 2 1 | 3 ]
[ 0 <span class="highlight">1</span> -1 | -4 ]
[ 0 -7 -1 | 4 ]</code></div>
<h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
<p class="operation">R1 β R1 - 2*R2</p>
<p class="operation">R3 β R3 + 7*R2</p>
<div class="matrix-display"><code>[ 1 0 3 | 11 ] <span class="comment"><-- R1: [1-2*0, 2-2*1, 1-2*(-1) | 3-2*(-4)] = [1, 0, 3 | 11]</span>
[ 0 1 -1 | -4 ]
[ 0 0 -8 | -24 ] <span class="comment"><-- R3: [0+7*0, -7+7*1, -1+7*(-1) | 4+7*(-4)] = [0, 0, -8 | -24]</span></code></div>
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
<p>Ab R3,C3 wale element (-8) ko 1 banana hai.</p>
<p class="operation">R3 β R3 / (-8)</p>
<div class="matrix-display"><code>[ 1 0 3 | 11 ]
[ 0 1 -1 | -4 ]
[ 0 0 <span class="highlight">1</span> | 3 ]</code></div>
<h3>Step 5: Teesre pivot ke upar zeros banana</h3>
<p class="operation">R1 β R1 - 3*R3</p>
<p class="operation">R2 β R2 + R3</p>
<div class="matrix-display"><code>[ 1 0 0 | 2 ] <span class="comment"><-- R1: [1-3*0, 0-3*0, 3-3*1 | 11-3*3] = [1, 0, 0 | 2]</span>
[ 0 1 0 | -1 ] <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -4+3] = [0, 1, 0 | -1]</span>
[ 0 0 1 | 3 ]</code></div>
<p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
<h2>Hal (Solution)</h2>
<p>RREF matrix se humein solution milta hai:</p>
<div class="solution">
x = 2 <br>
y = -1 <br>
z = 3
</div>
<h2>Jaanch (Verification)</h2>
<p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
<h3>Equation 1: x + 2y + z = 3</h3>
<p>(2) + 2(-1) + (3) = 2 - 2 + 3 = 0 + 3 = <strong>3</strong> (Sahi hai!)</p>
<h3>Equation 2: 2x + 3y + 3z = 10</h3>
<p>2(2) + 3(-1) + 3(3) = 4 - 3 + 9 = 1 + 9 = <strong>10</strong> (Sahi hai!)</p>
<h3>Equation 3: 3x - y + 2z = 13</h3>
<p>3(2) - (-1) + 2(3) = 6 + 1 + 6 = 7 + 6 = <strong>13</strong> (Sahi hai!)</p>
<p>Solution bilkul sahi hai! Ekdum mast!</p>
</div>
</body>
</html> |