Spaces:
Running
Running
File size: 8,259 Bytes
000e43a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gauss Elimination Method (Naya Sawaal)</title>
<style>
body {
font-family: 'Arial', sans-serif;
line-height: 1.7;
margin: 0;
padding: 20px;
background-color: #f0f0f0; /* Light gray background */
color: #222; /* Darker text color */
}
.container {
max-width: 850px; /* Thoda zyada width calculations ke liye */
margin: auto;
background: #ffffff; /* White background */
padding: 30px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.15); /* Thoda zyada shadow */
}
h1, h2, h3 {
color: #00509e; /* Strong blue */
border-bottom: 2px solid #007bff; /* Bright blue border */
padding-bottom: 8px; /* Zyada padding */
}
h1 {
text-align: center;
font-size: 2.2em;
}
h2 {
font-size: 1.6em;
margin-top: 35px;
}
h3 {
font-size: 1.3em;
margin-top: 25px;
color: #007bff; /* Bright blue */
}
p {
margin-bottom: 18px;
}
.equations, .matrix-display {
background-color: #e9ecef; /* Very light gray */
border: 1px solid #ced4da; /* Gray border */
padding: 18px;
border-radius: 6px;
margin-bottom: 22px;
font-family: 'Consolas', 'Courier New', Courier, monospace;
font-size: 1.15em;
overflow-x: auto;
white-space: pre;
}
.matrix-display code {
display: block;
}
.solution {
background-color: #d4edda; /* Light green */
border: 1px solid #c3e6cb; /* Green border */
padding: 18px;
border-radius: 6px;
font-size: 1.15em;
font-weight: bold;
color: #155724; /* Dark green */
}
.operation {
font-style: italic;
color: #6c757d; /* Medium gray */
}
.highlight {
color: #dc3545; /* Red for pivot */
font-weight: bold;
}
.comment {
color: #28a745; /* Green for comments */
font-style: italic;
}
.back-substitution {
background-color: #fff3cd; /* Light yellow */
padding: 15px;
border-left: 5px solid #ffc107; /* Amber */
margin-top: 20px;
}
</style>
</head>
<body>
<div class="container">
<h1>Gauss Elimination Method Se Hal</h1>
<h2>(a) Sawaal (Problem Statement)</h2>
<p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p>
<div class="equations">
10x + y + 2z = 13
3x + 10y + z = 14
2x + 3y + 10z = 15
</div>
<h2>Gauss Elimination Ke Steps</h2>
<p>Pehle, augmented matrix banate hain:</p>
<div class="matrix-display"><code>[ 10 1 2 | 13 ]
[ 3 10 1 | 14 ]
[ 2 3 10 | 15 ]</code></div>
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
<p>Pehla element (R1,C1) 10 hai, isko 1 banana hai.</p>
<p class="operation">R1 β R1 / 10</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> 0.1 0.2 | 1.3 ] <span class="comment"><-- (10/10=1, 1/10=0.1, 2/10=0.2, 13/10=1.3)</span>
[ 3 10 1 | 14 ]
[ 2 3 10 | 15 ]</code></div>
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p>
<p class="operation">R2 β R2 - 3*R1</p>
<p class="operation">R3 β R3 - 2*R1</p>
<div class="matrix-display"><code>[ 1 0.1 0.2 | 1.3 ]
[ 0 9.7 0.4 | 10.1 ] <span class="comment"><-- R2: [3-3*1, 10-3*0.1, 1-3*0.2 | 14-3*1.3] = [0, 9.7, 0.4 | 10.1]</span>
[ 0 2.8 9.6 | 12.4 ] <span class="comment"><-- R3: [2-2*1, 3-2*0.1, 10-2*0.2 | 15-2*1.3] = [0, 2.8, 9.6 | 12.4]</span></code></div>
<h3>Step 3: Dusra pivot (R2,C2) ko 1 banana</h3>
<p>Ab R2,C2 wala element 9.7 hai, isko 1 banana hai.</p>
<p class="operation">R2 β R2 / 9.7</p>
<div class="matrix-display"><code>[ 1 0.1 0.2 | 1.3 ]
[ 0 <span class="highlight">1</span> 0.4/9.7 | 10.1/9.7 ] <span class="comment"><-- (0.4/9.7 β 0.041237, 10.1/9.7 β 1.041237)</span>
[ 0 2.8 9.6 | 12.4 ]</code></div>
<p class="comment">Decimal values ko thoda round off karke likh sakte hain, ya fractions mein bhi rakh sakte hain accuracy ke liye. Hum yahan calculation mein exact values use karenge, display mein approximate.</p>
<div class="matrix-display"><code>[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ] <span class="comment">(Approx values for display)</span>
[ 0 2.8 9.6 | 12.4 ]</code></div>
<h3>Step 4: Dusre pivot ke neeche zero banana</h3>
<p>Ab R2,C2 wale pivot (1) ke neeche (R3,C2) zero banana hai.</p>
<p class="operation">R3 β R3 - 2.8*R2</p>
<div class="matrix-display"><code>[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ]
[ 0 0 9.484536 | 9.484536 ] <span class="comment"><-- R3_C3: 9.6 - 2.8*(0.4/9.7) = (9.6*9.7 - 2.8*0.4)/9.7 = (93.12 - 1.12)/9.7 = 92/9.7 β 9.484536</span>
<span class="comment"> R3_Const: 12.4 - 2.8*(10.1/9.7) = (12.4*9.7 - 2.8*10.1)/9.7 = (120.28 - 28.28)/9.7 = 92/9.7 β 9.484536</span></code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai. Ab teesre pivot ko 1 banana hai.</p>
<h3>Step 5: Teesra pivot (R3,C3) ko 1 banana</h3>
<p>R3,C3 mein ab 92/9.7 hai.</p>
<p class="operation">R3 β R3 / (92/9.7) (Yaani R3 * (9.7/92))</p>
<div class="matrix-display"><code>[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ] <span class="comment">(0.4/9.7 | 10.1/9.7)</span>
[ 0 0 <span class="highlight">1</span> | 1 ]</code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p>
<h2>Back-Substitution (Peeche se values nikalna)</h2>
<p>Matrix se equations wapas likhte hain (accurate fractions use karte hue):</p>
<div class="back-substitution">
Equation 1: x + (1/10)y + (2/10)z = 13/10 <br>
Equation 2: y + (4/97)z = 101/97 <br>
Equation 3: z = 1
</div>
<p><strong>Equation 3 se:</strong></p>
<p>z = <strong>1</strong></p>
<p><strong>z ki value Equation 2 mein daalo:</strong></p>
<p>y + (4/97)(1) = 101/97</p>
<p>y = 101/97 - 4/97</p>
<p>y = 97/97</p>
<p>y = <strong>1</strong></p>
<p><strong>y aur z ki values Equation 1 mein daalo:</strong></p>
<p>x + (1/10)(1) + (2/10)(1) = 13/10</p>
<p>x + 1/10 + 2/10 = 13/10</p>
<p>x + 3/10 = 13/10</p>
<p>x = 13/10 - 3/10</p>
<p>x = 10/10</p>
<p>x = <strong>1</strong></p>
<h2>Hal (Solution)</h2>
<div class="solution">
x = 1 <br>
y = 1 <br>
z = 1
</div>
<h2>Jaanch (Verification)</h2>
<p>Values ko original equations mein daal kar check karte hain:</p>
<h3>Original Equation 1: 10x + y + 2z = 13</h3>
<p>10(1) + (1) + 2(1) = 10 + 1 + 2 = <strong>13</strong> (Sahi hai!)</p>
<h3>Original Equation 2: 3x + 10y + z = 14</h3>
<p>3(1) + 10(1) + (1) = 3 + 10 + 1 = <strong>14</strong> (Sahi hai!)</p>
<h3>Original Equation 3: 2x + 3y + 10z = 15</h3>
<p>2(1) + 3(1) + 10(1) = 2 + 3 + 10 = <strong>15</strong> (Sahi hai!)</p>
<p>Solution bilkul sahi hai! Ekdum perfect!</p>
</div>
</body>
</html> |