Spaces:
Running
Running
Create 2.html
Browse files
2.html
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="hi-IN">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Dusra Sawaal: Equations Solve Karna Gauss-Jordan Method Se</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 10 |
+
line-height: 1.8;
|
| 11 |
+
margin: 0;
|
| 12 |
+
padding: 20px;
|
| 13 |
+
background-color: #f0f8ff; /* AliceBlue background */
|
| 14 |
+
color: #333;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 800px;
|
| 18 |
+
margin: auto;
|
| 19 |
+
background: #fff;
|
| 20 |
+
padding: 25px;
|
| 21 |
+
border-radius: 8px;
|
| 22 |
+
box-shadow: 0 0 15px rgba(0,0,0,0.1);
|
| 23 |
+
}
|
| 24 |
+
h1, h2, h3 {
|
| 25 |
+
color: #2c3e50; /* Dark blue */
|
| 26 |
+
border-bottom: 2px solid #5dade2; /* Lighter blue border */
|
| 27 |
+
padding-bottom: 5px;
|
| 28 |
+
}
|
| 29 |
+
h1 {
|
| 30 |
+
text-align: center;
|
| 31 |
+
font-size: 2em;
|
| 32 |
+
}
|
| 33 |
+
h2 {
|
| 34 |
+
font-size: 1.5em;
|
| 35 |
+
margin-top: 30px;
|
| 36 |
+
}
|
| 37 |
+
h3 {
|
| 38 |
+
font-size: 1.2em;
|
| 39 |
+
margin-top: 20px;
|
| 40 |
+
color: #5dade2; /* Lighter blue */
|
| 41 |
+
}
|
| 42 |
+
p {
|
| 43 |
+
margin-bottom: 15px;
|
| 44 |
+
}
|
| 45 |
+
.equations, .matrix-display {
|
| 46 |
+
background-color: #eaf2f8; /* Light blue-gray */
|
| 47 |
+
border: 1px solid #aed6f1; /* Soft blue border */
|
| 48 |
+
padding: 15px;
|
| 49 |
+
border-radius: 5px;
|
| 50 |
+
margin-bottom: 20px;
|
| 51 |
+
font-family: 'Courier New', Courier, monospace;
|
| 52 |
+
font-size: 1.1em;
|
| 53 |
+
overflow-x: auto;
|
| 54 |
+
white-space: pre;
|
| 55 |
+
}
|
| 56 |
+
.matrix-display code {
|
| 57 |
+
display: block;
|
| 58 |
+
}
|
| 59 |
+
.solution {
|
| 60 |
+
background-color: #e8f8f5; /* Light cyan */
|
| 61 |
+
border: 1px solid #76d7c4; /* Mint green border */
|
| 62 |
+
padding: 15px;
|
| 63 |
+
border-radius: 5px;
|
| 64 |
+
font-size: 1.1em;
|
| 65 |
+
font-weight: bold;
|
| 66 |
+
color: #1abc9c; /* Turquoise */
|
| 67 |
+
}
|
| 68 |
+
.operation {
|
| 69 |
+
font-style: italic;
|
| 70 |
+
color: #7f8c8d; /* Gray */
|
| 71 |
+
}
|
| 72 |
+
.highlight {
|
| 73 |
+
color: #e74c3c; /* Red for pivot */
|
| 74 |
+
font-weight: bold;
|
| 75 |
+
}
|
| 76 |
+
.comment {
|
| 77 |
+
color: #27ae60; /* Green for comments */
|
| 78 |
+
font-style: italic;
|
| 79 |
+
}
|
| 80 |
+
</style>
|
| 81 |
+
</head>
|
| 82 |
+
<body>
|
| 83 |
+
<div class="container">
|
| 84 |
+
<h1>Linear Equations Ko Solve Karna (Part 2)</h1>
|
| 85 |
+
<h2>(a) Sawaal (Problem Statement)</h2>
|
| 86 |
+
<p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
|
| 87 |
+
<div class="equations">
|
| 88 |
+
2x - 6y + 8z = 24
|
| 89 |
+
5x + 4y - 3z = 2
|
| 90 |
+
3x + y + 2z = 16
|
| 91 |
+
</div>
|
| 92 |
+
|
| 93 |
+
<h2>Gauss-Jordan Elimination Ke Steps</h2>
|
| 94 |
+
<p>Sabse pehle, in equations ka augmented matrix banayenge:</p>
|
| 95 |
+
<div class="matrix-display"><code>[ 2 -6 8 | 24 ]
|
| 96 |
+
[ 5 4 -3 | 2 ]
|
| 97 |
+
[ 3 1 2 | 16 ]</code></div>
|
| 98 |
+
|
| 99 |
+
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
|
| 100 |
+
<p>Pehla element (R1,C1) abhi 2 hai, isko 1 banana hai.</p>
|
| 101 |
+
<p class="operation">R1 β R1 / 2 (Row 1 ko 2 se divide karo)</p>
|
| 102 |
+
<div class="matrix-display"><code>[ <span class="highlight">1</span> -3 4 | 12 ]
|
| 103 |
+
[ 5 4 -3 | 2 ]
|
| 104 |
+
[ 3 1 2 | 16 ]</code></div>
|
| 105 |
+
|
| 106 |
+
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
|
| 107 |
+
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
|
| 108 |
+
<p class="operation">R2 β R2 - 5*R1</p>
|
| 109 |
+
<p class="operation">R3 β R3 - 3*R1</p>
|
| 110 |
+
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
|
| 111 |
+
[ 0 19 -23 | -58 ] <span class="comment"><-- R2: [5-5*1, 4-5*(-3), -3-5*4 | 2-5*12] = [0, 19, -23 | -58]</span>
|
| 112 |
+
[ 0 10 -10 | -20 ] <span class="comment"><-- R3: [3-3*1, 1-3*(-3), 2-3*4 | 16-3*12] = [0, 10, -10 | -20]</span></code></div>
|
| 113 |
+
|
| 114 |
+
<h3>Step 3: Dusra pivot (R2,C2) ko 1 banana (Thoda Smart Work)</h3>
|
| 115 |
+
<p>Dekho, Row 3 (R3) ko 10 se divide karke simplify kar sakte hain:</p>
|
| 116 |
+
<p class="operation">R3 β R3 / 10</p>
|
| 117 |
+
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
|
| 118 |
+
[ 0 19 -23 | -58 ]
|
| 119 |
+
[ 0 1 -1 | -2 ] <span class="comment"><-- Simplified R3</span></code></div>
|
| 120 |
+
<p>Ab R2 aur R3 ko swap (badal) kar lete hain taaki R2,C2 mein 1 aa jaaye.</p>
|
| 121 |
+
<p class="operation">R2 β R3</p>
|
| 122 |
+
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
|
| 123 |
+
[ 0 <span class="highlight">1</span> -1 | -2 ]
|
| 124 |
+
[ 0 19 -23 | -58 ]</code></div>
|
| 125 |
+
<p>Ab R2,C2 wala pivot 1 ho gaya!</p>
|
| 126 |
+
|
| 127 |
+
<h3>Step 4: Dusre pivot ke upar aur neeche zeros banana</h3>
|
| 128 |
+
<p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
|
| 129 |
+
<p class="operation">R1 β R1 + 3*R2</p>
|
| 130 |
+
<p class="operation">R3 β R3 - 19*R2</p>
|
| 131 |
+
<div class="matrix-display"><code>[ 1 0 1 | 6 ] <span class="comment"><-- R1: [1, -3+3*1, 4+3*(-1) | 12+3*(-2)] = [1, 0, 1 | 6]</span>
|
| 132 |
+
[ 0 1 -1 | -2 ]
|
| 133 |
+
[ 0 0 -4 | -20 ] <span class="comment"><-- R3: [0, 19-19*1, -23-19*(-1) | -58-19*(-2)] = [0, 0, -4 | -20]</span></code></div>
|
| 134 |
+
|
| 135 |
+
<h3>Step 5: Teesra pivot (R3,C3) ko 1 banana</h3>
|
| 136 |
+
<p>Ab R3,C3 wale element (-4) ko 1 banana hai.</p>
|
| 137 |
+
<p class="operation">R3 β R3 / (-4)</p>
|
| 138 |
+
<div class="matrix-display"><code>[ 1 0 1 | 6 ]
|
| 139 |
+
[ 0 1 -1 | -2 ]
|
| 140 |
+
[ 0 0 <span class="highlight">1</span> | 5 ]</code></div>
|
| 141 |
+
|
| 142 |
+
<h3>Step 6: Teesre pivot ke upar zeros banana</h3>
|
| 143 |
+
<p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
|
| 144 |
+
<p class="operation">R1 β R1 - R3</p>
|
| 145 |
+
<p class="operation">R2 β R2 + R3</p>
|
| 146 |
+
<div class="matrix-display"><code>[ 1 0 0 | 1 ] <span class="comment"><-- R1: [1-0, 0-0, 1-1 | 6-5] = [1, 0, 0 | 1]</span>
|
| 147 |
+
[ 0 1 0 | 3 ] <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -2+5] = [0, 1, 0 | 3]</span>
|
| 148 |
+
[ 0 0 1 | 5 ]</code></div>
|
| 149 |
+
<p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
|
| 150 |
+
|
| 151 |
+
<h2>Hal (Solution)</h2>
|
| 152 |
+
<p>RREF matrix se humein solution milta hai:</p>
|
| 153 |
+
<div class="solution">
|
| 154 |
+
x = 1 <br>
|
| 155 |
+
y = 3 <br>
|
| 156 |
+
z = 5
|
| 157 |
+
</div>
|
| 158 |
+
|
| 159 |
+
<h2>Jaanch (Verification)</h2>
|
| 160 |
+
<p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
|
| 161 |
+
|
| 162 |
+
<h3>Equation 1: 2x - 6y + 8z = 24</h3>
|
| 163 |
+
<p>2(1) - 6(3) + 8(5) = 2 - 18 + 40 = -16 + 40 = <strong>24</strong> (Sahi hai!)</p>
|
| 164 |
+
|
| 165 |
+
<h3>Equation 2: 5x + 4y - 3z = 2</h3>
|
| 166 |
+
<p>5(1) + 4(3) - 3(5) = 5 + 12 - 15 = 17 - 15 = <strong>2</strong> (Sahi hai!)</p>
|
| 167 |
+
|
| 168 |
+
<h3>Equation 3: 3x + y + 2z = 16</h3>
|
| 169 |
+
<p>3(1) + (3) + 2(5) = 3 + 3 + 10 = 6 + 10 = <strong>16</strong> (Sahi hai!)</p>
|
| 170 |
+
|
| 171 |
+
<p>Solution bilkul sahi hai!</p>
|
| 172 |
+
</div>
|
| 173 |
+
</body>
|
| 174 |
+
</html>
|