sameernotes commited on
Commit
3c7556b
Β·
verified Β·
1 Parent(s): 4cf1f6f

Create 2.html

Browse files
Files changed (1) hide show
  1. 2.html +174 -0
2.html ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="hi-IN">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Dusra Sawaal: Equations Solve Karna Gauss-Jordan Method Se</title>
7
+ <style>
8
+ body {
9
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
10
+ line-height: 1.8;
11
+ margin: 0;
12
+ padding: 20px;
13
+ background-color: #f0f8ff; /* AliceBlue background */
14
+ color: #333;
15
+ }
16
+ .container {
17
+ max-width: 800px;
18
+ margin: auto;
19
+ background: #fff;
20
+ padding: 25px;
21
+ border-radius: 8px;
22
+ box-shadow: 0 0 15px rgba(0,0,0,0.1);
23
+ }
24
+ h1, h2, h3 {
25
+ color: #2c3e50; /* Dark blue */
26
+ border-bottom: 2px solid #5dade2; /* Lighter blue border */
27
+ padding-bottom: 5px;
28
+ }
29
+ h1 {
30
+ text-align: center;
31
+ font-size: 2em;
32
+ }
33
+ h2 {
34
+ font-size: 1.5em;
35
+ margin-top: 30px;
36
+ }
37
+ h3 {
38
+ font-size: 1.2em;
39
+ margin-top: 20px;
40
+ color: #5dade2; /* Lighter blue */
41
+ }
42
+ p {
43
+ margin-bottom: 15px;
44
+ }
45
+ .equations, .matrix-display {
46
+ background-color: #eaf2f8; /* Light blue-gray */
47
+ border: 1px solid #aed6f1; /* Soft blue border */
48
+ padding: 15px;
49
+ border-radius: 5px;
50
+ margin-bottom: 20px;
51
+ font-family: 'Courier New', Courier, monospace;
52
+ font-size: 1.1em;
53
+ overflow-x: auto;
54
+ white-space: pre;
55
+ }
56
+ .matrix-display code {
57
+ display: block;
58
+ }
59
+ .solution {
60
+ background-color: #e8f8f5; /* Light cyan */
61
+ border: 1px solid #76d7c4; /* Mint green border */
62
+ padding: 15px;
63
+ border-radius: 5px;
64
+ font-size: 1.1em;
65
+ font-weight: bold;
66
+ color: #1abc9c; /* Turquoise */
67
+ }
68
+ .operation {
69
+ font-style: italic;
70
+ color: #7f8c8d; /* Gray */
71
+ }
72
+ .highlight {
73
+ color: #e74c3c; /* Red for pivot */
74
+ font-weight: bold;
75
+ }
76
+ .comment {
77
+ color: #27ae60; /* Green for comments */
78
+ font-style: italic;
79
+ }
80
+ </style>
81
+ </head>
82
+ <body>
83
+ <div class="container">
84
+ <h1>Linear Equations Ko Solve Karna (Part 2)</h1>
85
+ <h2>(a) Sawaal (Problem Statement)</h2>
86
+ <p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
87
+ <div class="equations">
88
+ 2x - 6y + 8z = 24
89
+ 5x + 4y - 3z = 2
90
+ 3x + y + 2z = 16
91
+ </div>
92
+
93
+ <h2>Gauss-Jordan Elimination Ke Steps</h2>
94
+ <p>Sabse pehle, in equations ka augmented matrix banayenge:</p>
95
+ <div class="matrix-display"><code>[ 2 -6 8 | 24 ]
96
+ [ 5 4 -3 | 2 ]
97
+ [ 3 1 2 | 16 ]</code></div>
98
+
99
+ <h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
100
+ <p>Pehla element (R1,C1) abhi 2 hai, isko 1 banana hai.</p>
101
+ <p class="operation">R1 β†’ R1 / 2 (Row 1 ko 2 se divide karo)</p>
102
+ <div class="matrix-display"><code>[ <span class="highlight">1</span> -3 4 | 12 ]
103
+ [ 5 4 -3 | 2 ]
104
+ [ 3 1 2 | 16 ]</code></div>
105
+
106
+ <h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
107
+ <p>Ab R1,C1 wale pivot (1) ke neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
108
+ <p class="operation">R2 β†’ R2 - 5*R1</p>
109
+ <p class="operation">R3 β†’ R3 - 3*R1</p>
110
+ <div class="matrix-display"><code>[ 1 -3 4 | 12 ]
111
+ [ 0 19 -23 | -58 ] <span class="comment"><-- R2: [5-5*1, 4-5*(-3), -3-5*4 | 2-5*12] = [0, 19, -23 | -58]</span>
112
+ [ 0 10 -10 | -20 ] <span class="comment"><-- R3: [3-3*1, 1-3*(-3), 2-3*4 | 16-3*12] = [0, 10, -10 | -20]</span></code></div>
113
+
114
+ <h3>Step 3: Dusra pivot (R2,C2) ko 1 banana (Thoda Smart Work)</h3>
115
+ <p>Dekho, Row 3 (R3) ko 10 se divide karke simplify kar sakte hain:</p>
116
+ <p class="operation">R3 β†’ R3 / 10</p>
117
+ <div class="matrix-display"><code>[ 1 -3 4 | 12 ]
118
+ [ 0 19 -23 | -58 ]
119
+ [ 0 1 -1 | -2 ] <span class="comment"><-- Simplified R3</span></code></div>
120
+ <p>Ab R2 aur R3 ko swap (badal) kar lete hain taaki R2,C2 mein 1 aa jaaye.</p>
121
+ <p class="operation">R2 ↔ R3</p>
122
+ <div class="matrix-display"><code>[ 1 -3 4 | 12 ]
123
+ [ 0 <span class="highlight">1</span> -1 | -2 ]
124
+ [ 0 19 -23 | -58 ]</code></div>
125
+ <p>Ab R2,C2 wala pivot 1 ho gaya!</p>
126
+
127
+ <h3>Step 4: Dusre pivot ke upar aur neeche zeros banana</h3>
128
+ <p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
129
+ <p class="operation">R1 β†’ R1 + 3*R2</p>
130
+ <p class="operation">R3 β†’ R3 - 19*R2</p>
131
+ <div class="matrix-display"><code>[ 1 0 1 | 6 ] <span class="comment"><-- R1: [1, -3+3*1, 4+3*(-1) | 12+3*(-2)] = [1, 0, 1 | 6]</span>
132
+ [ 0 1 -1 | -2 ]
133
+ [ 0 0 -4 | -20 ] <span class="comment"><-- R3: [0, 19-19*1, -23-19*(-1) | -58-19*(-2)] = [0, 0, -4 | -20]</span></code></div>
134
+
135
+ <h3>Step 5: Teesra pivot (R3,C3) ko 1 banana</h3>
136
+ <p>Ab R3,C3 wale element (-4) ko 1 banana hai.</p>
137
+ <p class="operation">R3 β†’ R3 / (-4)</p>
138
+ <div class="matrix-display"><code>[ 1 0 1 | 6 ]
139
+ [ 0 1 -1 | -2 ]
140
+ [ 0 0 <span class="highlight">1</span> | 5 ]</code></div>
141
+
142
+ <h3>Step 6: Teesre pivot ke upar zeros banana</h3>
143
+ <p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
144
+ <p class="operation">R1 β†’ R1 - R3</p>
145
+ <p class="operation">R2 β†’ R2 + R3</p>
146
+ <div class="matrix-display"><code>[ 1 0 0 | 1 ] <span class="comment"><-- R1: [1-0, 0-0, 1-1 | 6-5] = [1, 0, 0 | 1]</span>
147
+ [ 0 1 0 | 3 ] <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -2+5] = [0, 1, 0 | 3]</span>
148
+ [ 0 0 1 | 5 ]</code></div>
149
+ <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
150
+
151
+ <h2>Hal (Solution)</h2>
152
+ <p>RREF matrix se humein solution milta hai:</p>
153
+ <div class="solution">
154
+ x = 1 <br>
155
+ y = 3 <br>
156
+ z = 5
157
+ </div>
158
+
159
+ <h2>Jaanch (Verification)</h2>
160
+ <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
161
+
162
+ <h3>Equation 1: 2x - 6y + 8z = 24</h3>
163
+ <p>2(1) - 6(3) + 8(5) = 2 - 18 + 40 = -16 + 40 = <strong>24</strong> (Sahi hai!)</p>
164
+
165
+ <h3>Equation 2: 5x + 4y - 3z = 2</h3>
166
+ <p>5(1) + 4(3) - 3(5) = 5 + 12 - 15 = 17 - 15 = <strong>2</strong> (Sahi hai!)</p>
167
+
168
+ <h3>Equation 3: 3x + y + 2z = 16</h3>
169
+ <p>3(1) + (3) + 2(5) = 3 + 3 + 10 = 6 + 10 = <strong>16</strong> (Sahi hai!)</p>
170
+
171
+ <p>Solution bilkul sahi hai!</p>
172
+ </div>
173
+ </body>
174
+ </html>