File size: 15,884 Bytes
1e8ac17
 
 
 
 
 
 
 
6ae7708
 
 
214c905
6ae7708
 
214c905
 
 
 
 
 
 
 
 
d33862c
1e8ac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae7708
1e8ac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214c905
 
1e8ac17
214c905
 
 
1e8ac17
214c905
 
 
1e8ac17
 
 
6ae7708
1e8ac17
214c905
1e8ac17
 
 
 
 
 
 
 
214c905
1e8ac17
6ae7708
 
214c905
6ae7708
 
 
 
1e8ac17
6ae7708
 
1e8ac17
afd0824
 
1e8ac17
afd0824
1e8ac17
214c905
 
1e8ac17
 
 
 
 
214c905
 
 
 
 
6ae7708
1e8ac17
 
 
 
 
 
 
 
 
 
 
 
 
6ae7708
 
214c905
6ae7708
 
 
 
 
 
 
 
 
 
 
1e8ac17
3472658
6ae7708
 
 
 
3472658
6ae7708
 
 
 
1e8ac17
214c905
 
 
afd0824
214c905
afd0824
1e8ac17
afd0824
6ae7708
 
 
1e8ac17
214c905
 
 
 
 
 
 
 
afd0824
214c905
 
afd0824
214c905
 
6ae7708
214c905
1e8ac17
214c905
 
3472658
afd0824
214c905
 
afd0824
6ae7708
afd0824
214c905
6ae7708
214c905
1e8ac17
214c905
1e8ac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214c905
1e8ac17
214c905
 
1e8ac17
afd0824
 
 
 
 
 
 
1e8ac17
214c905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8ac17
afd0824
1e8ac17
afd0824
214c905
 
1e8ac17
afd0824
1e8ac17
afd0824
214c905
1e8ac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214c905
 
1e8ac17
 
6ae7708
1e8ac17
6ae7708
214c905
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# app.py (Complete, for Hugging Face Spaces)

from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, status, Request
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel, EmailStr, Field
from typing import List, Optional
import cv2
import numpy as np
import tensorflow as tf
import pickle
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
import os
import io
import sys
import tempfile
import requests
from PIL import Image
import uvicorn
import shutil
from pathlib import Path
import py_text_scan
from sqlalchemy import create_engine, Column, Integer, String, Boolean, Text, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, Session
from passlib.context import CryptContext
import datetime

# --- Database Setup (SQLite) ---
DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

# --- Database Models ---
class User(Base):
    __tablename__ = "users"
    id = Column(Integer, primary_key=True, index=True)
    username = Column(String, unique=True, index=True)
    email = Column(String, unique=True, index=True)
    hashed_password = Column(String)
    is_active = Column(Boolean, default=True)
    is_admin = Column(Boolean, default=False)

class Feedback(Base):
    __tablename__ = "feedback"
    id = Column(Integer, primary_key=True, index=True)
    username = Column(String)
    comment = Column(Text)
    created_at = Column(DateTime, default=datetime.datetime.utcnow)

Base.metadata.create_all(bind=engine)  # Create tables

# --- Pydantic Schemas ---
class UserBase(BaseModel):
    username: str = Field(..., min_length=3, max_length=50)
    email: EmailStr
    password: str = Field(..., min_length=6)

class UserCreate(UserBase):
    pass

class User(UserBase):
    id: int
    is_active: bool
    is_admin: bool
    class Config:
        from_attributes = True

class UserUpdate(BaseModel):
    username: Optional[str] = None
    email: Optional[EmailStr] = None
    is_active: Optional[bool] = None
    is_admin: Optional[bool] = None

class FeedbackBase(BaseModel):
    username: str
    comment: str

class FeedbackCreate(FeedbackBase):
    pass

class Feedback(FeedbackBase):
    id: int
    created_at: datetime.datetime
    class Config:
        from_attributes = True

class Token(BaseModel):
    access_token: str
    token_type: str

class TokenData(BaseModel):
    username: str | None = None

class OCRResponse(BaseModel):
    sakshi_output: str
    word_count: int
    prediction_label: str


# --- Password Hashing ---
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

# --- Authentication ---
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

def get_db():
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()

async def get_current_user(db: Session = Depends(get_db), token: str = Depends(oauth2_scheme)):
    user = get_user_by_username(db, username=token)
    if not user:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Invalid authentication credentials",
            headers={"WWW-Authenticate": "Bearer"},
        )
    return user

async def get_current_active_user(current_user: User = Depends(get_current_user)):
    if not current_user.is_active:
        raise HTTPException(status_code=400, detail="Inactive user")
    return current_user

async def get_current_admin_user(current_user: User = Depends(get_current_active_user)):
    if not current_user.is_admin:
        raise HTTPException(status_code=403, detail="Not an administrator")
    return current_user


# --- CRUD Operations ---
def get_user(db: Session, user_id: int):
    return db.query(User).filter(User.id == user_id).first()

def get_user_by_username(db: Session, username: str):
    return db.query(User).filter(User.username == username).first()

def get_user_by_email(db: Session, email: str):
    return db.query(User).filter(User.email == email).first()

def get_users(db: Session, skip: int = 0, limit: int = 100):
    return db.query(User).offset(skip).limit(limit).all()

def create_user(db: Session, user: UserCreate):
    hashed_password = pwd_context.hash(user.password)
    db_user = User(username=user.username, email=user.email, hashed_password=hashed_password)
    db.add(db_user)
    db.commit()
    db.refresh(db_user)
    return db_user

def update_user(db: Session, user_id: int, user: UserUpdate):
    db_user = get_user(db, user_id)
    if db_user:
        for key, value in user.dict(exclude_unset=True).items():
            setattr(db_user, key, value)
        db.commit()
        db.refresh(db_user)
    return db_user

def delete_user(db: Session, user_id: int):
    db_user = get_user(db, user_id)
    if db_user:
        db.delete(db_user)
        db.commit()
        return True
    return False

def verify_password(plain_password, hashed_password):
    return pwd_context.verify(plain_password, hashed_password)

def create_feedback(db: Session, feedback: FeedbackCreate):
    db_feedback = Feedback(**feedback.dict())
    db.add(db_feedback)
    db.commit()
    db.refresh(db_feedback)
    return db_feedback

def get_feedback(db: Session, skip: int = 0, limit: int = 100):
    return db.query(Feedback).order_by(Feedback.created_at.desc()).offset(skip).limit(limit).all()



# --- FastAPI App Setup ---
app = FastAPI(
    title="Hindi OCR API",
    description="API for Hindi OCR, word detection, authentication, and feedback",
    version="1.0.0"
)

# --- Hugging Face Model and Resource URLs ---
MODEL_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/hindi_ocr_model.keras"
ENCODER_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/label_encoder.pkl"
FONT_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/NotoSansDevanagari-Regular.ttf"
MODEL_PATH = "hindi_ocr_model.keras"  # Local paths after download
ENCODER_PATH = "label_encoder.pkl"
FONT_PATH = "NotoSansDevanagari-Regular.ttf"

# --- Download Helper ---
def download_file(url, dest):
    if not os.path.exists(dest):
        print(f"Downloading {dest}...")
        response = requests.get(url, stream=True)
        response.raise_for_status()
        with open(dest, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        print(f"Downloaded {dest}")

# --- Model Loading ---
def load_model():
    if not os.path.exists(MODEL_PATH):
        return None
    return tf.keras.models.load_model(MODEL_PATH)

def load_label_encoder():
    if not os.path.exists(ENCODER_PATH):
       return None
    with open(ENCODER_PATH, 'rb') as f:
        return pickle.load(f)
# --- Global Variables ---
model = None
label_encoder = None
session_files = {}  # For storing temporary file paths

# --- Startup Event ---
@app.on_event("startup")
async def startup_event():
    global model, label_encoder
    download_file(MODEL_URL, MODEL_PATH)
    download_file(ENCODER_URL, ENCODER_PATH)
    download_file(FONT_URL, FONT_PATH)

    if os.path.exists(FONT_PATH):
        fm.fontManager.addfont(FONT_PATH)
        plt.rcParams['font.family'] = 'Noto Sans Devanagari'
    model = load_model()
    label_encoder = load_label_encoder()

    # Create an admin user if one doesn't exist
    db = SessionLocal()
    if not get_user_by_username(db, "admin"):
        admin_user = UserCreate(username="admin", email="[email protected]", password="adminpassword") #Change the password here
        create_user(db, admin_user)
        admin = get_user_by_username(db, "admin")
        admin.is_admin = True # Make this user an admin
        db.commit()
    db.close()



# --- Word Detection ---
def detect_words(image):
    _, binary = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    kernel = np.ones((3,3), np.uint8)
    dilated = cv2.dilate(binary, kernel, iterations=2)
    contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    word_img = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    word_count = 0
    for contour in contours:
        x, y, w, h = cv2.boundingRect(contour)
        if w > 10 and h > 10:
            cv2.rectangle(word_img, (x, y), (x+w, y+h), (0, 255, 0), 2)
            word_count += 1
    return word_img, word_count

# --- Sakshi OCR ---
def run_py_text_scan(image_path):
    buffer = io.StringIO()
    old_stdout = sys.stdout
    sys.stdout = buffer
    try:
        py_text_scan.generate(image_path)
    finally:
        sys.stdout = old_stdout
    return buffer.getvalue()

# --- Image Processing ---
def process_image(image_array):
    img = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
    word_detected_img, word_count = detect_words(img)
    word_detection_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
    cv2.imwrite(word_detection_path, word_detected_img)
    session_files['word_detection'] = word_detection_path

    pred_path = None
    try:
        img_resized = cv2.resize(img, (128, 32))
        img_norm = img_resized / 255.0
        img_input = img_norm[np.newaxis, ..., np.newaxis]
        if model is not None and label_encoder is not None:
            pred = model.predict(img_input)
            pred_label_idx = np.argmax(pred)
            pred_label = label_encoder.inverse_transform([pred_label_idx])[0]
            fig, ax = plt.subplots()
            ax.imshow(img, cmap='gray')
            ax.set_title(f"Predicted: {pred_label}", fontsize=12)
            ax.axis('off')
            pred_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
            plt.savefig(pred_path)
            plt.close()
            session_files['prediction'] = pred_path
        else:
            pred_label = "Model or encoder not loaded"
    except Exception as e:
        pred_label = f"Error: {str(e)}"

    with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
        cv2.imwrite(tmp_file.name, img)
        sakshi_output = run_py_text_scan(tmp_file.name)
        os.unlink(tmp_file.name)
    return {
        "sakshi_output": sakshi_output,
        "word_detection_path": word_detection_path if 'word_detection' in session_files else None,
        "word_count": word_count,
        "prediction_path": pred_path if 'prediction' in session_files else None,
        "prediction_label": pred_label
    }

# --- API Endpoints ---

# Authentication Endpoints
@app.post("/token", response_model=Token)
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(get_db)):
    user = get_user_by_username(db, form_data.username)
    if not user or not verify_password(form_data.password, user.hashed_password):
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Incorrect username or password",
            headers={"WWW-Authenticate": "Bearer"},
        )
    # Use username as the access token (for simplicity in this example)
    access_token = user.username
    return {"access_token": access_token, "token_type": "bearer"}

@app.post("/signup", response_model=User)
async def signup(user: UserCreate = Depends(), db: Session = Depends(get_db)):
    db_user = get_user_by_username(db, username=user.username)
    if db_user:
        raise HTTPException(status_code=400, detail="Username already registered")
    db_user = get_user_by_email(db, email=user.email)
    if db_user:
        raise HTTPException(status_code=400, detail="Email already registered")
    return create_user(db=db, user=user)

# OCR Endpoint
@app.post("/process/", response_model=OCRResponse)
async def process(file: UploadFile = File(...),  current_user: User = Depends(get_current_active_user)):
    if not file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="File must be an image")

    for key, filepath in session_files.items():
        if os.path.exists(filepath):
            try:
                os.unlink(filepath)
            except:
                pass
    session_files.clear()

    temp_file = tempfile.NamedTemporaryFile(delete=False)
    try:
        with temp_file as f:
            shutil.copyfileobj(file.file, f)
        image = Image.open(temp_file.name)
        image_array = np.array(image)
        result = process_image(image_array)
        return OCRResponse(
            sakshi_output=result["sakshi_output"],
            word_count=result["word_count"],
            prediction_label=result["prediction_label"]
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
    finally:
        os.unlink(temp_file.name)

@app.get("/word-detection/")
async def get_word_detection(current_user: User = Depends(get_current_active_user)):
    if 'word_detection' not in session_files or not os.path.exists(session_files['word_detection']):
        raise HTTPException(status_code=404, detail="Word detection image not found")
    return FileResponse(session_files['word_detection'])

@app.get("/prediction/")
async def get_prediction(current_user: User = Depends(get_current_active_user)):
    if 'prediction' not in session_files or not os.path.exists(session_files['prediction']):
        raise HTTPException(status_code=404, detail="Prediction image not found")
    return FileResponse(session_files['prediction'])

# Feedback Endpoint
@app.post("/feedback/", response_model=Feedback)
async def create_feedback_route(feedback: FeedbackCreate,  current_user: User = Depends(get_current_active_user),db: Session = Depends(get_db)):
    return create_feedback(db=db, feedback=feedback)

# Admin Endpoints
@app.get("/admin/users/", response_model=List[User])
async def read_users(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
    users = get_users(db, skip=skip, limit=limit)
    return users

@app.get("/admin/users/{user_id}", response_model=User)
async def read_user(user_id: int, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
    db_user = get_user(db, user_id=user_id)
    if db_user is None:
        raise HTTPException(status_code=404, detail="User not found")
    return db_user

@app.put("/admin/users/{user_id}", response_model=User)
async def update_user_route(user_id: int, user: UserUpdate, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
    updated_user = update_user(db=db, user_id=user_id, user=user)
    if updated_user is None:
        raise HTTPException(status_code=404, detail="User not found")
    return updated_user

@app.delete("/admin/users/{user_id}", response_model=dict)
async def delete_user_route(user_id: int, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
    if delete_user(db=db, user_id=user_id):
        return {"message": "User deleted successfully"}
    else:
        raise HTTPException(status_code=404, detail="User not found")


@app.get("/admin/feedback/", response_model=List[Feedback])
async def read_feedback(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
    feedback = get_feedback(db, skip=skip, limit=limit)
    return feedback

# Basic Root Endpoint
@app.get("/")
async def root():
    return {"message": "Hindi OCR API with Authentication and Admin.  See /docs for API details."}


# --- Run with uvicorn (for local testing) ---
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)