Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +2 -0
- Dockerfile +16 -0
- NotoSansDevanagari-Regular.ttf +3 -0
- app.py +166 -0
- hindi_ocr_model.keras +3 -0
- label_encoder.pkl +3 -0
- requirements.txt +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
hindi_ocr_model.keras filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
NotoSansDevanagari-Regular.ttf filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
NotoSansDevanagari-Regular.ttf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:385e78e6359a9d88a0f243d53b1209d7548361ba2194e2b9ec779bcaa7e8949d
|
| 3 |
+
size 219212
|
app.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import sys
|
| 4 |
+
import cv2
|
| 5 |
+
import base64
|
| 6 |
+
import pickle
|
| 7 |
+
import numpy as np
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import matplotlib.font_manager as fm
|
| 11 |
+
import tempfile
|
| 12 |
+
import sakshi_ocr
|
| 13 |
+
|
| 14 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 15 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
| 16 |
+
|
| 17 |
+
# Define paths to your assets (update these if necessary)
|
| 18 |
+
MODEL_PATH = 'hindi_ocr_model.keras'
|
| 19 |
+
ENCODER_PATH = 'label_encoder.pkl'
|
| 20 |
+
FONT_PATH = 'NotoSansDevanagari-Regular.ttf'
|
| 21 |
+
|
| 22 |
+
# Load custom font if available
|
| 23 |
+
if os.path.exists(FONT_PATH):
|
| 24 |
+
fm.fontManager.addfont(FONT_PATH)
|
| 25 |
+
plt.rcParams['font.family'] = 'Noto Sans Devanagari'
|
| 26 |
+
else:
|
| 27 |
+
print("Custom font not found. Using default font.")
|
| 28 |
+
|
| 29 |
+
# Load the OCR model
|
| 30 |
+
def load_model():
|
| 31 |
+
if not os.path.exists(MODEL_PATH):
|
| 32 |
+
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
|
| 33 |
+
return tf.keras.models.load_model(MODEL_PATH)
|
| 34 |
+
|
| 35 |
+
# Load the label encoder
|
| 36 |
+
def load_label_encoder():
|
| 37 |
+
if not os.path.exists(ENCODER_PATH):
|
| 38 |
+
raise FileNotFoundError(f"Label encoder file not found at {ENCODER_PATH}")
|
| 39 |
+
with open(ENCODER_PATH, 'rb') as f:
|
| 40 |
+
return pickle.load(f)
|
| 41 |
+
|
| 42 |
+
# Global loading so they persist across requests
|
| 43 |
+
model = load_model()
|
| 44 |
+
label_encoder = load_label_encoder()
|
| 45 |
+
|
| 46 |
+
# Function for word detection
|
| 47 |
+
def detect_words(image):
|
| 48 |
+
# Assume input is a grayscale image
|
| 49 |
+
_, binary = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 50 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 51 |
+
dilated = cv2.dilate(binary, kernel, iterations=2)
|
| 52 |
+
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 53 |
+
|
| 54 |
+
word_img = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
| 55 |
+
word_count = 0
|
| 56 |
+
for contour in contours:
|
| 57 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 58 |
+
if w > 10 and h > 10:
|
| 59 |
+
cv2.rectangle(word_img, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 60 |
+
word_count += 1
|
| 61 |
+
return word_img, word_count
|
| 62 |
+
|
| 63 |
+
# Function to run Sakshi OCR and capture its output
|
| 64 |
+
def run_sakshi_ocr(image_path):
|
| 65 |
+
buffer = io.StringIO()
|
| 66 |
+
old_stdout = sys.stdout
|
| 67 |
+
sys.stdout = buffer
|
| 68 |
+
try:
|
| 69 |
+
sakshi_ocr.generate(image_path)
|
| 70 |
+
finally:
|
| 71 |
+
sys.stdout = old_stdout
|
| 72 |
+
return buffer.getvalue()
|
| 73 |
+
|
| 74 |
+
# Utility function: convert image (numpy array) to a base64 encoded string
|
| 75 |
+
def image_to_base64(image, ext=".png"):
|
| 76 |
+
success, encoded_image = cv2.imencode(ext, image)
|
| 77 |
+
if not success:
|
| 78 |
+
return None
|
| 79 |
+
return base64.b64encode(encoded_image).decode('utf-8')
|
| 80 |
+
|
| 81 |
+
# Initialize FastAPI app
|
| 82 |
+
app = FastAPI(title="Hindi OCR App by sakshi")
|
| 83 |
+
|
| 84 |
+
@app.get("/", response_class=HTMLResponse)
|
| 85 |
+
async def root():
|
| 86 |
+
html_content = """
|
| 87 |
+
<html>
|
| 88 |
+
<head>
|
| 89 |
+
<title>Hindi OCR App by sakshi</title>
|
| 90 |
+
</head>
|
| 91 |
+
<body>
|
| 92 |
+
<h1>Hindi OCR App by sakshi</h1>
|
| 93 |
+
<form action="/predict" enctype="multipart/form-data" method="post">
|
| 94 |
+
<input name="file" type="file" accept="image/*">
|
| 95 |
+
<input type="submit" value="Upload and Predict">
|
| 96 |
+
</form>
|
| 97 |
+
</body>
|
| 98 |
+
</html>
|
| 99 |
+
"""
|
| 100 |
+
return HTMLResponse(content=html_content)
|
| 101 |
+
|
| 102 |
+
@app.post("/predict")
|
| 103 |
+
async def predict(file: UploadFile = File(...)):
|
| 104 |
+
# Read and decode the uploaded image
|
| 105 |
+
contents = await file.read()
|
| 106 |
+
nparr = np.frombuffer(contents, np.uint8)
|
| 107 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
|
| 108 |
+
if img is None:
|
| 109 |
+
raise HTTPException(status_code=400, detail="Error reading the image.")
|
| 110 |
+
|
| 111 |
+
# Encode the original image to base64 for visualization
|
| 112 |
+
original_image = image_to_base64(cv2.cvtColor(img, cv2.COLOR_GRAY2BGR))
|
| 113 |
+
|
| 114 |
+
# Word detection
|
| 115 |
+
word_img, word_count = detect_words(img)
|
| 116 |
+
word_img_encoded = image_to_base64(word_img)
|
| 117 |
+
|
| 118 |
+
# OCR model prediction for single word
|
| 119 |
+
try:
|
| 120 |
+
img_resized = cv2.resize(img, (128, 32))
|
| 121 |
+
img_norm = img_resized / 255.0
|
| 122 |
+
img_input = img_norm[np.newaxis, ..., np.newaxis] # shape: (1, 32, 128, 1)
|
| 123 |
+
pred = model.predict(img_input)
|
| 124 |
+
pred_label_idx = np.argmax(pred)
|
| 125 |
+
pred_label = label_encoder.inverse_transform([pred_label_idx])[0]
|
| 126 |
+
|
| 127 |
+
# Generate an image with the prediction using matplotlib
|
| 128 |
+
fig, ax = plt.subplots()
|
| 129 |
+
ax.imshow(img, cmap='gray')
|
| 130 |
+
ax.set_title(f"Predicted: {pred_label}", fontsize=12)
|
| 131 |
+
ax.axis('off')
|
| 132 |
+
buf = io.BytesIO()
|
| 133 |
+
plt.savefig(buf, format="png")
|
| 134 |
+
buf.seek(0)
|
| 135 |
+
pred_img_array = np.frombuffer(buf.getvalue(), np.uint8)
|
| 136 |
+
prediction_img = cv2.imdecode(pred_img_array, cv2.IMREAD_COLOR)
|
| 137 |
+
prediction_img_encoded = image_to_base64(prediction_img)
|
| 138 |
+
plt.close(fig)
|
| 139 |
+
except Exception as e:
|
| 140 |
+
raise HTTPException(status_code=500, detail=f"Error in OCR model processing: {e}")
|
| 141 |
+
|
| 142 |
+
# Run Sakshi OCR on the image by saving temporarily
|
| 143 |
+
try:
|
| 144 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
| 145 |
+
cv2.imwrite(tmp_file.name, img)
|
| 146 |
+
tmp_file_path = tmp_file.name
|
| 147 |
+
sakshi_output = run_sakshi_ocr(tmp_file_path)
|
| 148 |
+
os.remove(tmp_file_path)
|
| 149 |
+
except Exception as e:
|
| 150 |
+
sakshi_output = f"Error running Sakshi OCR: {e}"
|
| 151 |
+
|
| 152 |
+
# Prepare the response
|
| 153 |
+
response_data = {
|
| 154 |
+
"word_count": word_count,
|
| 155 |
+
"ocr_prediction": pred_label,
|
| 156 |
+
"sakshi_ocr_output": sakshi_output,
|
| 157 |
+
"original_image": original_image,
|
| 158 |
+
"word_detected_image": word_img_encoded,
|
| 159 |
+
"prediction_image": prediction_img_encoded
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
return JSONResponse(content=response_data)
|
| 163 |
+
|
| 164 |
+
if __name__ == "__main__":
|
| 165 |
+
import uvicorn
|
| 166 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
hindi_ocr_model.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19e4243a9588d0706e4b49a73d194d5606278e95e40ed38d0cfa1de1cc9905a4
|
| 3 |
+
size 12280598
|
label_encoder.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efc157e2cf396d358a32e1815c63b9636b963344635ef12e36e0ecb686f0ba7d
|
| 3 |
+
size 1920
|
requirements.txt
ADDED
|
File without changes
|