# app.py (Complete, for Hugging Face Spaces) from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, status, Request from fastapi.responses import FileResponse, JSONResponse, HTMLResponse from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm from fastapi.templating import Jinja2Templates from pydantic import BaseModel, EmailStr, Field from typing import List, Optional # Import Optional from typing import cv2 import numpy as np import tensorflow as tf import pickle import matplotlib.pyplot as plt import matplotlib.font_manager as fm import os import io import sys import tempfile import requests from PIL import Image import uvicorn import shutil from pathlib import Path import py_text_scan from sqlalchemy import create_engine, Column, Integer, String, Boolean, Text, DateTime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, Session from passlib.context import CryptContext import datetime # --- Database Setup (SQLite) --- DATABASE_URL = "sqlite:///./test.db" engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False}) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base = declarative_base() # --- Database Models --- class UserModel(Base): __tablename__ = "users" id = Column(Integer, primary_key=True, index=True) username = Column(String, unique=True, index=True) email = Column(String, unique=True, index=True) hashed_password = Column(String) is_active = Column(Boolean, default=True) is_admin = Column(Boolean, default=False) class FeedbackModel(Base): __tablename__ = "feedback" id = Column(Integer, primary_key=True, index=True) username = Column(String) comment = Column(Text) created_at = Column(DateTime, default=datetime.datetime.utcnow) Base.metadata.create_all(bind=engine) # Create tables # --- Pydantic Schemas --- class UserBase(BaseModel): username: str = Field(..., min_length=3, max_length=50) email: EmailStr class UserCreate(UserBase): password: str = Field(..., min_length=6) class UserResponse(UserBase): id: int is_active: bool is_admin: bool class Config: from_attributes = True class UserUpdate(BaseModel): username: Optional[str] = None email: Optional[EmailStr] = None is_active: Optional[bool] = None is_admin: Optional[bool] = None class FeedbackBase(BaseModel): username: str comment: str class FeedbackCreate(FeedbackBase): pass class FeedbackResponse(FeedbackBase): id: int created_at: datetime.datetime class Config: from_attributes = True class Token(BaseModel): access_token: str token_type: str class TokenData(BaseModel): username: Optional[str] = None # Use Optional[str] instead of str | None class OCRResponse(BaseModel): sakshi_output: str word_count: int prediction_label: str # --- Password Hashing --- pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") # --- Authentication --- oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") def get_db(): db = SessionLocal() try: yield db finally: db.close() async def get_current_user(db: Session = Depends(get_db), token: str = Depends(oauth2_scheme)): user = get_user_by_username(db, username=token) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid authentication credentials", headers={"WWW-Authenticate": "Bearer"}, ) return user async def get_current_active_user(current_user: UserResponse = Depends(get_current_user)): if not current_user.is_active: raise HTTPException(status_code=400, detail="Inactive user") return current_user async def get_current_admin_user(current_user: UserResponse = Depends(get_current_active_user)): if not current_user.is_admin: raise HTTPException(status_code=403, detail="Not an administrator") return current_user # --- CRUD Operations --- def get_user(db: Session, user_id: int): return db.query(UserModel).filter(UserModel.id == user_id).first() def get_user_by_username(db: Session, username: str): return db.query(UserModel).filter(UserModel.username == username).first() def get_user_by_email(db: Session, email: str): return db.query(UserModel).filter(UserModel.email == email).first() def get_users(db: Session, skip: int = 0, limit: int = 100): return db.query(UserModel).offset(skip).limit(limit).all() def create_user(db: Session, user: UserCreate): hashed_password = pwd_context.hash(user.password) db_user = UserModel(username=user.username, email=user.email, hashed_password=hashed_password) db.add(db_user) db.commit() db.refresh(db_user) return db_user def update_user(db: Session, user_id: int, user: UserUpdate): db_user = get_user(db, user_id) if db_user: for key, value in user.dict(exclude_unset=True).items(): setattr(db_user, key, value) db.commit() db.refresh(db_user) return db_user def delete_user(db: Session, user_id: int): db_user = get_user(db, user_id) if db_user: db.delete(db_user) db.commit() return True return False def verify_password(plain_password, hashed_password): return pwd_context.verify(plain_password, hashed_password) def create_feedback(db: Session, feedback: FeedbackCreate): db_feedback = FeedbackModel(**feedback.dict()) db.add(db_feedback) db.commit() db.refresh(db_feedback) return db_feedback def get_feedback(db: Session, skip: int = 0, limit: int = 100): return db.query(FeedbackModel).order_by(FeedbackModel.created_at.desc()).offset(skip).limit(limit).all() # --- FastAPI App Setup --- app = FastAPI( title="Hindi OCR API", description="API for Hindi OCR, word detection, authentication, and feedback", version="1.0.0" ) # --- Hugging Face Model and Resource URLs --- MODEL_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/hindi_ocr_model.keras" ENCODER_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/label_encoder.pkl" FONT_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/NotoSansDevanagari-Regular.ttf" MODEL_PATH = "hindi_ocr_model.keras" # Local paths after download ENCODER_PATH = "label_encoder.pkl" FONT_PATH = "NotoSansDevanagari-Regular.ttf" # --- Download Helper --- def download_file(url, dest): if not os.path.exists(dest): print(f"Downloading {dest}...") response = requests.get(url, stream=True) response.raise_for_status() with open(dest, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) print(f"Downloaded {dest}") # --- Model Loading --- def load_model(): if not os.path.exists(MODEL_PATH): return None return tf.keras.models.load_model(MODEL_PATH) def load_label_encoder(): if not os.path.exists(ENCODER_PATH): return None with open(ENCODER_PATH, 'rb') as f: return pickle.load(f) # --- Global Variables --- model = None label_encoder = None session_files = {} # For storing temporary file paths # --- Startup Event --- @app.on_event("startup") async def startup_event(): global model, label_encoder download_file(MODEL_URL, MODEL_PATH) download_file(ENCODER_URL, ENCODER_PATH) download_file(FONT_URL, FONT_PATH) if os.path.exists(FONT_PATH): fm.fontManager.addfont(FONT_PATH) plt.rcParams['font.family'] = 'Noto Sans Devanagari' model = load_model() label_encoder = load_label_encoder() # Create an admin user if one doesn't exist db = SessionLocal() if not get_user_by_username(db, "admin"): admin_user = UserCreate(username="admin", email="admin@example.com", password="adminpassword") #Change the password here create_user(db, admin_user) admin = get_user_by_username(db, "admin") admin.is_admin = True # Make this user an admin db.commit() db.close() # --- Word Detection --- def detect_words(image): _, binary = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) kernel = np.ones((3,3), np.uint8) dilated = cv2.dilate(binary, kernel, iterations=2) contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) word_img = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) word_count = 0 for contour in contours: x, y, w, h = cv2.boundingRect(contour) if w > 10 and h > 10: cv2.rectangle(word_img, (x, y), (x+w, y+h), (0, 255, 0), 2) word_count += 1 return word_img, word_count # --- Sakshi OCR --- def run_py_text_scan(image_path): buffer = io.StringIO() old_stdout = sys.stdout sys.stdout = buffer try: py_text_scan.generate(image_path) finally: sys.stdout = old_stdout return buffer.getvalue() # --- Image Processing --- def process_image(image_array): img = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY) word_detected_img, word_count = detect_words(img) word_detection_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name cv2.imwrite(word_detection_path, word_detected_img) session_files['word_detection'] = word_detection_path pred_path = None try: img_resized = cv2.resize(img, (128, 32)) img_norm = img_resized / 255.0 img_input = img_norm[np.newaxis, ..., np.newaxis] if model is not None and label_encoder is not None: pred = model.predict(img_input) pred_label_idx = np.argmax(pred) pred_label = label_encoder.inverse_transform([pred_label_idx])[0] fig, ax = plt.subplots() ax.imshow(img, cmap='gray') ax.set_title(f"Predicted: {pred_label}", fontsize=12) ax.axis('off') pred_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name plt.savefig(pred_path) plt.close() session_files['prediction'] = pred_path else: pred_label = "Model or encoder not loaded" except Exception as e: pred_label = f"Error: {str(e)}" with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: cv2.imwrite(tmp_file.name, img) sakshi_output = run_py_text_scan(tmp_file.name) os.unlink(tmp_file.name) return { "sakshi_output": sakshi_output, "word_detection_path": word_detection_path if 'word_detection' in session_files else None, "word_count": word_count, "prediction_path": pred_path if 'prediction' in session_files else None, "prediction_label": pred_label } # --- API Endpoints --- # Authentication Endpoints @app.post("/token", response_model=Token) async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(get_db)): user = get_user_by_username(db, form_data.username) if not user or not verify_password(form_data.password, user.hashed_password): raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) # Use username as the access token (for simplicity in this example) access_token = user.username return {"access_token": access_token, "token_type": "bearer"} @app.post("/signup", response_model=UserResponse) async def signup(user: UserCreate = Depends(), db: Session = Depends(get_db)): db_user = get_user_by_username(db, username=user.username) if db_user: raise HTTPException(status_code=400, detail="Username already registered") db_user = get_user_by_email(db, email=user.email) if db_user: raise HTTPException(status_code=400, detail="Email already registered") return create_user(db=db, user=user) # OCR Endpoint @app.post("/process/", response_model=OCRResponse) async def process(file: UploadFile = File(...), current_user: UserResponse = Depends(get_current_active_user)): if not file.content_type.startswith("image/"): raise HTTPException(status_code=400, detail="File must be an image") for key, filepath in session_files.items(): if os.path.exists(filepath): try: os.unlink(filepath) except: pass session_files.clear() temp_file = tempfile.NamedTemporaryFile(delete=False) try: with temp_file as f: shutil.copyfileobj(file.file, f) image = Image.open(temp_file.name) image_array = np.array(image) result = process_image(image_array) return OCRResponse( sakshi_output=result["sakshi_output"], word_count=result["word_count"], prediction_label=result["prediction_label"] ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}") finally: os.unlink(temp_file.name) @app.get("/word-detection/") async def get_word_detection(current_user: UserResponse = Depends(get_current_active_user)): if 'word_detection' not in session_files or not os.path.exists(session_files['word_detection']): raise HTTPException(status_code=404, detail="Word detection image not found") return FileResponse(session_files['word_detection']) @app.get("/prediction/") async def get_prediction(current_user: UserResponse = Depends(get_current_active_user)): if 'prediction' not in session_files or not os.path.exists(session_files['prediction']): raise HTTPException(status_code=404, detail="Prediction image not found") return FileResponse(session_files['prediction']) # Feedback Endpoint @app.post("/feedback/", response_model=FeedbackResponse) async def create_feedback_route(feedback: FeedbackCreate, current_user: UserResponse = Depends(get_current_active_user),db: Session = Depends(get_db)): return create_feedback(db=db, feedback=feedback) # Admin Endpoints @app.get("/admin/users/", response_model=List[UserResponse]) async def read_users(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: UserResponse = Depends(get_current_admin_user)): users = get_users(db, skip=skip, limit=limit) return users @app.get("/admin/users/{user_id}", response_model=UserResponse) async def read_user(user_id: int, db: Session = Depends(get_db), current_user: UserResponse = Depends(get_current_admin_user)): db_user = get_user(db, user_id=user_id) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return db_user @app.put("/admin/users/{user_id}", response_model=UserResponse) async def update_user_route(user_id: int, user: UserUpdate, db: Session = Depends(get_db), current_user: UserResponse = Depends(get_current_admin_user)): updated_user = update_user(db=db, user_id=user_id, user=user) if updated_user is None: raise HTTPException(status_code=404, detail="User not found") return updated_user @app.delete("/admin/users/{user_id}", response_model=dict) async def delete_user_route(user_id: int, db: Session = Depends(get_db), current_user: UserResponse = Depends(get_current_admin_user)): if delete_user(db=db, user_id=user_id): return {"message": "User deleted successfully"} else: raise HTTPException(status_code=404, detail="User not found") @app.get("/admin/feedback/", response_model=List[FeedbackResponse]) async def read_feedback(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: UserResponse = Depends(get_current_admin_user)): feedback = get_feedback(db, skip=skip, limit=limit) return feedback # Basic Root Endpoint @app.get("/") async def root(): return {"message": "Hindi OCR API with Authentication and Admin. See /docs for API details."} # --- Run with uvicorn (for local testing) --- if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)