Samuel Stevens commited on
Commit
d4c84c4
·
1 Parent(s): aabf2a7

initial (broken) commit

Browse files
Files changed (12) hide show
  1. .gitignore +2 -0
  2. README.md +10 -0
  3. app.py +520 -0
  4. ckpts/cfg.json +37 -0
  5. ckpts/clf.pt +3 -0
  6. ckpts/sae.pt +3 -0
  7. data/image_fpaths.json +0 -0
  8. data/image_labels.json +1 -0
  9. justfile +9 -0
  10. pyproject.toml +19 -0
  11. requirements.txt +211 -0
  12. uv.lock +0 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .aider*
2
+ .env
README.md CHANGED
@@ -5,6 +5,7 @@ colorFrom: gray
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.9.1
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
@@ -12,3 +13,12 @@ short_description: Interpret image classification models using SAEs.
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.9.1
8
+ python_version: 3.13
9
  app_file: app.py
10
  pinned: false
11
  license: mit
 
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
16
+
17
+ I used [s5cmd](https://github.com/peak/s5cmd) to upload CUB-2011 to Cloudflare R2.
18
+
19
+
20
+ ```sh
21
+ s5cmd --credentials-file ~/.local/etc/cloudflare/r2-credentials --endpoint-url https://6391ae4399fb354a41cab96372935a6e.r2.cloudflarestorage.com \
22
+ cp test/ s3://saev-cub2011/
23
+ ```
24
+
app.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import json
3
+ import logging
4
+ import math
5
+ import os
6
+ import pathlib
7
+ import random
8
+
9
+ import beartype
10
+ import einops.layers.torch
11
+ import gradio as gr
12
+ import numpy as np
13
+ import open_clip
14
+ import requests
15
+ import saev.nn
16
+ import torch
17
+ from jaxtyping import Float, jaxtyped
18
+ from PIL import Image, ImageDraw
19
+ from torch import Tensor
20
+ from torchvision.transforms import v2
21
+
22
+ log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
23
+ logging.basicConfig(level=logging.INFO, format=log_format)
24
+ logger = logging.getLogger("app.py")
25
+
26
+
27
+ ####################
28
+ # Global Constants #
29
+ ####################
30
+
31
+ DEBUG = True
32
+ """Whether we are debugging."""
33
+
34
+ n_sae_latents = 3
35
+ """Number of SAE latents to show."""
36
+
37
+ n_sae_examples = 4
38
+ """Number of SAE examples per latent to show."""
39
+
40
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
41
+ """Hardware accelerator, if any."""
42
+
43
+ vit_ckpt = "ViT-B-16/openai"
44
+ """CLIP checkpoint."""
45
+
46
+ n_patches_per_img: int = 196
47
+ """Number of patches per image in vit_ckpt."""
48
+
49
+ max_frequency = 1e-2
50
+ """Maximum frequency. Any feature that fires more than this is ignored."""
51
+
52
+ CWD = pathlib.Path(__file__).parent
53
+
54
+ r2_url = "https://pub-289086e849214430853bc87bd8964988.r2.dev/"
55
+
56
+
57
+ logger.info("Set global constants.")
58
+
59
+
60
+ ###########
61
+ # Helpers #
62
+ ###########
63
+
64
+
65
+ @beartype.beartype
66
+ def get_cache_dir() -> str:
67
+ """
68
+ Get cache directory from environment variables, defaulting to the current working directory (.)
69
+
70
+ Returns:
71
+ A path to a cache directory (might not exist yet).
72
+ """
73
+ cache_dir = ""
74
+ for var in ("HF_HOME", "HF_HUB_CACHE"):
75
+ cache_dir = cache_dir or os.environ.get(var, "")
76
+ return cache_dir or "."
77
+
78
+
79
+ @beartype.beartype
80
+ def load_model(fpath: str | pathlib.Path, *, device: str = "cpu") -> torch.nn.Module:
81
+ """
82
+ Loads a linear layer from disk.
83
+ """
84
+ with open(fpath, "rb") as fd:
85
+ kwargs = json.loads(fd.readline().decode())
86
+ buffer = io.BytesIO(fd.read())
87
+
88
+ model = torch.nn.Linear(**kwargs)
89
+ state_dict = torch.load(buffer, weights_only=True, map_location=device)
90
+ model.load_state_dict(state_dict)
91
+ model = model.to(device)
92
+ return model
93
+
94
+
95
+ @beartype.beartype
96
+ def get_dataset_img(i: int) -> Image.Image:
97
+ return Image.open(requests.get(r2_url + image_fpaths[i], stream=True).raw)
98
+
99
+
100
+ @beartype.beartype
101
+ def make_img(
102
+ img: Image.Image, patches: Float[Tensor, ""], *, upper: float | None = None
103
+ ) -> Image.Image:
104
+ # Resize to 256x256 and crop to 224x224
105
+ resize_size_px = (512, 512)
106
+ resize_w_px, resize_h_px = resize_size_px
107
+ crop_size_px = (448, 448)
108
+ crop_w_px, crop_h_px = crop_size_px
109
+ crop_coords_px = (
110
+ (resize_w_px - crop_w_px) // 2,
111
+ (resize_h_px - crop_h_px) // 2,
112
+ (resize_w_px + crop_w_px) // 2,
113
+ (resize_h_px + crop_h_px) // 2,
114
+ )
115
+
116
+ img = img.resize(resize_size_px).crop(crop_coords_px)
117
+ img = add_highlights(img, patches.numpy(), upper=upper, opacity=0.5)
118
+ return img
119
+
120
+
121
+ ##########
122
+ # Models #
123
+ ##########
124
+
125
+
126
+ @jaxtyped(typechecker=beartype.beartype)
127
+ class SplitClip(torch.nn.Module):
128
+ def __init__(self, *, n_end_layers: int):
129
+ super().__init__()
130
+
131
+ if vit_ckpt.startswith("hf-hub:"):
132
+ clip, _ = open_clip.create_model_from_pretrained(
133
+ vit_ckpt, cache_dir=get_cache_dir()
134
+ )
135
+ else:
136
+ arch, ckpt = vit_ckpt.split("/")
137
+ clip, _ = open_clip.create_model_from_pretrained(
138
+ arch, pretrained=ckpt, cache_dir=get_cache_dir()
139
+ )
140
+ model = clip.visual
141
+ model.proj = None
142
+ model.output_tokens = True # type: ignore
143
+ self.vit = model.eval()
144
+ assert not isinstance(self.vit, open_clip.timm_model.TimmModel)
145
+
146
+ self.n_end_layers = n_end_layers
147
+
148
+ @staticmethod
149
+ def _expand_token(token, batch_size: int):
150
+ return token.view(1, 1, -1).expand(batch_size, -1, -1)
151
+
152
+ def forward_start(self, x: Float[Tensor, "batch channels width height"]):
153
+ x = self.vit.conv1(x) # shape = [*, width, grid, grid]
154
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
155
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
156
+
157
+ # class embeddings and positional embeddings
158
+ x = torch.cat(
159
+ [self._expand_token(self.vit.class_embedding, x.shape[0]).to(x.dtype), x],
160
+ dim=1,
161
+ )
162
+ # shape = [*, grid ** 2 + 1, width]
163
+ x = x + self.vit.positional_embedding.to(x.dtype)
164
+
165
+ x = self.vit.patch_dropout(x)
166
+ x = self.vit.ln_pre(x)
167
+ for r in self.vit.transformer.resblocks[: -self.n_end_layers]:
168
+ x = r(x)
169
+ return x
170
+
171
+ def forward_end(self, x: Float[Tensor, "batch n_patches dim"]):
172
+ for r in self.vit.transformer.resblocks[-self.n_end_layers :]:
173
+ x = r(x)
174
+
175
+ x = self.vit.ln_post(x)
176
+ pooled, _ = self.vit._global_pool(x)
177
+ if self.vit.proj is not None:
178
+ pooled = pooled @ self.vit.proj
179
+
180
+ return pooled
181
+
182
+
183
+ # ViT
184
+ split_vit = SplitClip(n_end_layers=1)
185
+ split_vit = split_vit.to(device)
186
+ logger.info("Initialized CLIP ViT.")
187
+
188
+ # Linear classifier
189
+ clf_ckpt_fpath = CWD / "ckpts" / "clf.pt"
190
+ clf = load_model(clf_ckpt_fpath)
191
+ clf = clf.to(device).eval()
192
+ logger.info("Loaded linear classifier.")
193
+
194
+ # SAE
195
+ sae_ckpt_fpath = CWD / "ckpts" / "sae.pt"
196
+ sae = saev.nn.load(sae_ckpt_fpath.as_posix())
197
+ sae.to(device).eval()
198
+ logger.info("Loaded SAE.")
199
+
200
+
201
+ ############
202
+ # Datasets #
203
+ ############
204
+
205
+ human_transform = v2.Compose([
206
+ v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
207
+ v2.CenterCrop((448, 448)),
208
+ v2.ToImage(),
209
+ einops.layers.torch.Rearrange("channels width height -> width height channels"),
210
+ ])
211
+
212
+ arch, ckpt = vit_ckpt.split("/")
213
+ _, vit_transform = open_clip.create_model_from_pretrained(
214
+ arch, pretrained=ckpt, cache_dir=get_cache_dir()
215
+ )
216
+
217
+
218
+ with open(CWD / "data" / "image_fpaths.json") as fd:
219
+ image_fpaths = json.load(fd)
220
+
221
+
222
+ with open(CWD / "data" / "image_labels.json") as fd:
223
+ image_labels = json.load(fd)
224
+
225
+
226
+ # TODO:
227
+ # This dataset needs to be the CUB2011 dataset. But that means we need to calculate top_img_i based on CUB2011, not on iNat21 train-mini.
228
+ # examples_dataset = saev.activations.ImageFolder(
229
+ # "/research/nfs_su_809/workspace/stevens.994/datasets/inat21/train_mini",
230
+ # transform=v2.Compose([
231
+ # v2.Resize(size=(512, 512)),
232
+ # v2.CenterCrop(size=(448, 448)),
233
+ # ]),
234
+ # )
235
+
236
+ logger.info("Loaded all datasets.")
237
+
238
+ #############
239
+ # Variables #
240
+ #############
241
+
242
+
243
+ @beartype.beartype
244
+ def load_tensor(path: str | pathlib.Path) -> Tensor:
245
+ return torch.load(path, weights_only=True, map_location="cpu")
246
+
247
+
248
+ top_img_i = load_tensor(CWD / "data" / "top_img_i.pt")
249
+ top_values = load_tensor(CWD / "data" / "top_values.pt")
250
+ sparsity = load_tensor(CWD / "data" / "sparsity.pt")
251
+
252
+ mask = torch.ones((sae.cfg.d_sae), dtype=bool)
253
+ mask = mask & (sparsity < max_frequency)
254
+
255
+
256
+ #############
257
+ # Inference #
258
+ #############
259
+
260
+
261
+ @beartype.beartype
262
+ def get_image(image_i: int) -> list[Image.Image | int]:
263
+ image = get_dataset_img(image_i)
264
+ image = human_transform(image)
265
+ return [Image.fromarray(image.numpy()), image_labels[image_i]]
266
+
267
+
268
+ @beartype.beartype
269
+ def get_random_class_image(cls: int) -> Image.Image:
270
+ indices = [i for i, tgt in enumerate(image_labels) if tgt == cls]
271
+ i = random.choice(indices)
272
+
273
+ image = get_dataset_img(i)
274
+ image = human_transform(image)
275
+ return Image.fromarray(image.numpy())
276
+
277
+
278
+ @torch.inference_mode
279
+ def get_sae_examples(
280
+ image_i: int, patches: list[int]
281
+ ) -> list[None | Image.Image | int]:
282
+ """
283
+ Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
284
+ """
285
+ if not patches:
286
+ return [None] * 12 + [-1] * 3
287
+
288
+ img = get_dataset_img(image_i)
289
+ x = vit_transform(img)[None, ...].to(device)
290
+ x_BPD = split_vit.forward_start(x)
291
+ vit_acts_MD = x_BPD[0, patches].to(device)
292
+
293
+ _, f_x_MS, _ = sae(vit_acts_MD)
294
+ f_x_S = f_x_MS.sum(axis=0)
295
+
296
+ latents = torch.argsort(f_x_S, descending=True).cpu()
297
+ latents = latents[mask[latents]][:n_sae_latents].tolist()
298
+
299
+ images = []
300
+ for latent in latents:
301
+ img_patch_pairs, seen_i_im = [], set()
302
+ for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
303
+ if i_im in seen_i_im:
304
+ continue
305
+
306
+ # example = examples_dataset[i_im]
307
+ example = None
308
+ img_patch_pairs.append((example["image"], values_p))
309
+ seen_i_im.add(i_im)
310
+
311
+ # How to scale values.
312
+ upper = None
313
+ if top_values[latent].numel() > 0:
314
+ upper = top_values[latent].max().item()
315
+
316
+ latent_images = [
317
+ make_img(img, patches, upper=upper)
318
+ for img, patches in img_patch_pairs[:n_sae_examples]
319
+ ]
320
+
321
+ while len(latent_images) < n_sae_examples:
322
+ latent_images += [None]
323
+
324
+ images.extend(latent_images)
325
+
326
+ return images + latents
327
+
328
+
329
+ @torch.inference_mode
330
+ def get_pred_dist(i: int) -> dict[int, float]:
331
+ img = get_dataset_img(i)
332
+ x = vit_transform(img)[None, ...].to(device)
333
+ x_BPD = split_vit.forward_start(x)
334
+ x_BD = split_vit.forward_end(x_BPD)
335
+
336
+ logits_BC = clf(x_BD)
337
+
338
+ probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
339
+ return {i: prob for i, prob in enumerate(probs)}
340
+
341
+
342
+ @torch.inference_mode
343
+ def get_modified_dist(
344
+ image_i: int,
345
+ patches: list[int],
346
+ latent1: int,
347
+ latent2: int,
348
+ latent3: int,
349
+ value1: float,
350
+ value2: float,
351
+ value3: float,
352
+ ) -> dict[int, float]:
353
+ img = get_dataset_img(image_i)
354
+ x = vit_transform(img)[None, ...].to(device)
355
+ x_BPD = split_vit.forward_start(x)
356
+
357
+ cls_B1D, x_BPD = x_BPD[:, :1, :], x_BPD[:, 1:, :]
358
+
359
+ x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
360
+ err_BPD = x_BPD - x_hat_BPD
361
+
362
+ values = torch.tensor(
363
+ [
364
+ unscaled(float(value), top_values[latent].max().item())
365
+ for value, latent in [
366
+ (value1, latent1),
367
+ (value2, latent2),
368
+ (value3, latent3),
369
+ ]
370
+ ],
371
+ device=device,
372
+ )
373
+ patches = torch.tensor(patches, device=device)
374
+ latents = torch.tensor([latent1, latent2, latent3], device=device)
375
+ f_x_BPS[:, patches[:, None], latents[None, :]] = values
376
+
377
+ # Reproduce the SAE forward pass after f_x
378
+ modified_x_hat_BPD = (
379
+ einops.einsum(
380
+ f_x_BPS,
381
+ sae.W_dec,
382
+ "batch patches d_sae, d_sae d_vit -> batch patches d_vit",
383
+ )
384
+ + sae.b_dec
385
+ )
386
+
387
+ modified_BPD = torch.cat([cls_B1D, err_BPD + modified_x_hat_BPD], axis=1)
388
+
389
+ modified_BD = split_vit.forward_end(modified_BPD)
390
+ logits_BC = clf(modified_BD)
391
+
392
+ probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
393
+ return {i: prob for i, prob in enumerate(probs)}
394
+
395
+
396
+ @beartype.beartype
397
+ def unscaled(x: float, max_obs: float) -> float:
398
+ """Scale from [-20, 20] to [20 * -max_obs, 20 * max_obs]."""
399
+ return map_range(x, (-20.0, 20.0), (-20.0 * max_obs, 20.0 * max_obs))
400
+
401
+
402
+ @beartype.beartype
403
+ def map_range(
404
+ x: float,
405
+ domain: tuple[float | int, float | int],
406
+ range: tuple[float | int, float | int],
407
+ ):
408
+ a, b = domain
409
+ c, d = range
410
+ if not (a <= x <= b):
411
+ raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
412
+ return c + (x - a) * (d - c) / (b - a)
413
+
414
+
415
+ @jaxtyped(typechecker=beartype.beartype)
416
+ def add_highlights(
417
+ img: Image.Image,
418
+ patches: Float[np.ndarray, " n_patches"],
419
+ *,
420
+ upper: float | None = None,
421
+ opacity: float = 0.9,
422
+ ) -> Image.Image:
423
+ if not len(patches):
424
+ return img
425
+
426
+ iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches)))
427
+ iw_px, ih_px = img.size
428
+ pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
429
+ assert iw_np * ih_np == len(patches)
430
+
431
+ # Create a transparent overlay
432
+ overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
433
+ draw = ImageDraw.Draw(overlay)
434
+
435
+ # Using semi-transparent red (255, 0, 0, alpha)
436
+ for p, val in enumerate(patches):
437
+ assert upper is not None
438
+ val /= upper + 1e-9
439
+ x_np, y_np = p % iw_np, p // ih_np
440
+ draw.rectangle(
441
+ [
442
+ (x_np * pw_px, y_np * ph_px),
443
+ (x_np * pw_px + pw_px, y_np * ph_px + ph_px),
444
+ ],
445
+ fill=(int(val * 256), 0, 0, int(opacity * val * 256)),
446
+ )
447
+
448
+ # Composite the original image and the overlay
449
+ return Image.alpha_composite(img.convert("RGBA"), overlay)
450
+
451
+
452
+ #############
453
+ # Interface #
454
+ #############
455
+
456
+
457
+ with gr.Blocks() as demo:
458
+ image_number = gr.Number(label="Test Example", precision=0)
459
+ class_number = gr.Number(label="Test Class", precision=0)
460
+ input_image = gr.Image(label="Input Image")
461
+ get_input_image_btn = gr.Button(value="Get Input Image")
462
+ get_input_image_btn.click(
463
+ get_image,
464
+ inputs=[image_number],
465
+ outputs=[input_image, class_number],
466
+ api_name="get-image",
467
+ )
468
+ get_random_class_image_btn = gr.Button(value="Get Random Class Image")
469
+ get_input_image_btn.click(
470
+ get_random_class_image,
471
+ inputs=[image_number],
472
+ outputs=[input_image],
473
+ api_name="get-random-class-image",
474
+ )
475
+
476
+ patch_numbers = gr.CheckboxGroup(
477
+ label="Image Patch", choices=list(range(n_patches_per_img))
478
+ )
479
+ top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
480
+ top_latent_numbers = [
481
+ gr.Number(label=f"Top Latents #{j + 1}", precision=0)
482
+ for j in range(n_sae_latents)
483
+ ]
484
+ sae_example_images = [
485
+ gr.Image(label=f"Latent #{j}, Example #{i + 1}")
486
+ for i in range(n_sae_examples)
487
+ for j in range(n_sae_latents)
488
+ ]
489
+ get_sae_examples_btn = gr.Button(value="Get SAE Examples")
490
+ get_sae_examples_btn.click(
491
+ get_sae_examples,
492
+ inputs=[image_number, patch_numbers],
493
+ outputs=sae_example_images + top_latent_numbers,
494
+ api_name="get-sae-examples",
495
+ )
496
+
497
+ pred_dist = gr.Label(label="Pred. Dist.")
498
+ get_pred_dist_btn = gr.Button(value="Get Pred. Distribution")
499
+ get_pred_dist_btn.click(
500
+ get_pred_dist,
501
+ inputs=[image_number],
502
+ outputs=[pred_dist],
503
+ api_name="get-preds",
504
+ )
505
+
506
+ latent_numbers = [gr.Number(label=f"Latent {i + 1}", precision=0) for i in range(3)]
507
+ value_sliders = [
508
+ gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
509
+ ]
510
+ get_modified_dist_btn = gr.Button(value="Get Modified Label")
511
+ get_modified_dist_btn.click(
512
+ get_modified_dist,
513
+ inputs=[image_number, patch_numbers] + latent_numbers + value_sliders,
514
+ outputs=[pred_dist],
515
+ api_name="get-modified",
516
+ )
517
+
518
+
519
+ if __name__ == "__main__":
520
+ demo.launch()
ckpts/cfg.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data": {
3
+ "shard_root": "/local/scratch/stevens.994/cache/saev/50149a5a12c70d378dc38f1976d676239839b591cadbfc9af5c84268ac30a868/",
4
+ "patches": "patches",
5
+ "layer": -2,
6
+ "clamp": 100000.0,
7
+ "n_random_samples": 524288,
8
+ "scale_mean": true,
9
+ "scale_norm": true
10
+ },
11
+ "n_workers": 32,
12
+ "n_patches": 100000000,
13
+ "sae": {
14
+ "d_vit": 768,
15
+ "exp_factor": 32,
16
+ "sparsity_coeff": 0.0016,
17
+ "n_reinit_samples": 524288,
18
+ "ghost_grads": false,
19
+ "remove_parallel_grads": true,
20
+ "normalize_w_dec": true,
21
+ "seed": 159
22
+ },
23
+ "n_sparsity_warmup": 500,
24
+ "lr": 0.001,
25
+ "n_lr_warmup": 500,
26
+ "sae_batch_size": 16384,
27
+ "track": true,
28
+ "wandb_project": "saev",
29
+ "tag": "baseline-v4.7",
30
+ "log_every": 25,
31
+ "ckpt_path": "./checkpoints",
32
+ "device": "cuda",
33
+ "seed": 59,
34
+ "slurm": false,
35
+ "slurm_acct": "PAS2136",
36
+ "log_to": "./logs"
37
+ }
ckpts/clf.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b672e36e8718d6593be0ccf6fbf8a956799e4ce16e6cc3591f340942c129da5b
3
+ size 616642
ckpts/sae.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62cb213777f231ba2de3eaf4a6fd8410e2b9d9f6c95a53dbe0167dd445d1f283
3
+ size 151098370
data/image_fpaths.json ADDED
The diff for this file is too large to render. See raw diff
 
data/image_labels.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 132, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 143, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 147, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 156, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 159, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 162, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 164, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 166, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 174, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 177, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 179, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 184, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 185, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 189, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199]
justfile ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ build: lint
2
+ uv pip compile pyproject.toml > requirements.txt
3
+
4
+ lint: fmt
5
+ git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff check
6
+
7
+ fmt:
8
+ git ls-files "*.py" --cached --others --exclude-standard | xargs uv run isort
9
+ git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff format --preview
pyproject.toml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "saev-image-classification"
3
+ version = "0.1.0"
4
+ description = "Gradio app space for image classification with SAEs"
5
+ readme = "README.md"
6
+ requires-python = ">=3.12"
7
+ dependencies = [
8
+ "beartype>=0.19.0",
9
+ "einops>=0.8.0",
10
+ "gradio>=5.0.0",
11
+ "jaxtyping>=0.2.36",
12
+ "numpy>=1.26.4",
13
+ "pillow>=10.4.0",
14
+ "torch>=2.4.0",
15
+ "torchvision>=0.19.0",
16
+ ]
17
+
18
+ [tool.ruff.lint]
19
+ ignore = ["F722"]
requirements.txt ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file was autogenerated by uv via the following command:
2
+ # uv pip compile pyproject.toml
3
+ aiofiles==23.2.1
4
+ # via gradio
5
+ annotated-types==0.7.0
6
+ # via pydantic
7
+ anyio==4.8.0
8
+ # via
9
+ # gradio
10
+ # httpx
11
+ # starlette
12
+ beartype==0.19.0
13
+ # via saev-image-classification (pyproject.toml)
14
+ certifi==2024.12.14
15
+ # via
16
+ # httpcore
17
+ # httpx
18
+ # requests
19
+ charset-normalizer==3.4.1
20
+ # via requests
21
+ click==8.1.8
22
+ # via
23
+ # typer
24
+ # uvicorn
25
+ einops==0.8.0
26
+ # via saev-image-classification (pyproject.toml)
27
+ fastapi==0.115.6
28
+ # via gradio
29
+ ffmpy==0.5.0
30
+ # via gradio
31
+ filelock==3.16.1
32
+ # via
33
+ # huggingface-hub
34
+ # torch
35
+ # triton
36
+ fsspec==2024.12.0
37
+ # via
38
+ # gradio-client
39
+ # huggingface-hub
40
+ # torch
41
+ gradio==5.9.1
42
+ # via saev-image-classification (pyproject.toml)
43
+ gradio-client==1.5.2
44
+ # via gradio
45
+ h11==0.14.0
46
+ # via
47
+ # httpcore
48
+ # uvicorn
49
+ httpcore==1.0.7
50
+ # via httpx
51
+ httpx==0.28.1
52
+ # via
53
+ # gradio
54
+ # gradio-client
55
+ # safehttpx
56
+ huggingface-hub==0.27.1
57
+ # via
58
+ # gradio
59
+ # gradio-client
60
+ idna==3.10
61
+ # via
62
+ # anyio
63
+ # httpx
64
+ # requests
65
+ jaxtyping==0.2.36
66
+ # via saev-image-classification (pyproject.toml)
67
+ jinja2==3.1.5
68
+ # via
69
+ # gradio
70
+ # torch
71
+ markdown-it-py==3.0.0
72
+ # via rich
73
+ markupsafe==2.1.5
74
+ # via
75
+ # gradio
76
+ # jinja2
77
+ mdurl==0.1.2
78
+ # via markdown-it-py
79
+ mpmath==1.3.0
80
+ # via sympy
81
+ networkx==3.4.2
82
+ # via torch
83
+ numpy==2.2.1
84
+ # via
85
+ # saev-image-classification (pyproject.toml)
86
+ # gradio
87
+ # pandas
88
+ # torchvision
89
+ nvidia-cublas-cu12==12.4.5.8
90
+ # via
91
+ # nvidia-cudnn-cu12
92
+ # nvidia-cusolver-cu12
93
+ # torch
94
+ nvidia-cuda-cupti-cu12==12.4.127
95
+ # via torch
96
+ nvidia-cuda-nvrtc-cu12==12.4.127
97
+ # via torch
98
+ nvidia-cuda-runtime-cu12==12.4.127
99
+ # via torch
100
+ nvidia-cudnn-cu12==9.1.0.70
101
+ # via torch
102
+ nvidia-cufft-cu12==11.2.1.3
103
+ # via torch
104
+ nvidia-curand-cu12==10.3.5.147
105
+ # via torch
106
+ nvidia-cusolver-cu12==11.6.1.9
107
+ # via torch
108
+ nvidia-cusparse-cu12==12.3.1.170
109
+ # via
110
+ # nvidia-cusolver-cu12
111
+ # torch
112
+ nvidia-nccl-cu12==2.21.5
113
+ # via torch
114
+ nvidia-nvjitlink-cu12==12.4.127
115
+ # via
116
+ # nvidia-cusolver-cu12
117
+ # nvidia-cusparse-cu12
118
+ # torch
119
+ nvidia-nvtx-cu12==12.4.127
120
+ # via torch
121
+ orjson==3.10.13
122
+ # via gradio
123
+ packaging==24.2
124
+ # via
125
+ # gradio
126
+ # gradio-client
127
+ # huggingface-hub
128
+ pandas==2.2.3
129
+ # via gradio
130
+ pillow==11.1.0
131
+ # via
132
+ # saev-image-classification (pyproject.toml)
133
+ # gradio
134
+ # torchvision
135
+ pydantic==2.10.4
136
+ # via
137
+ # fastapi
138
+ # gradio
139
+ pydantic-core==2.27.2
140
+ # via pydantic
141
+ pydub==0.25.1
142
+ # via gradio
143
+ pygments==2.19.1
144
+ # via rich
145
+ python-dateutil==2.9.0.post0
146
+ # via pandas
147
+ python-multipart==0.0.20
148
+ # via gradio
149
+ pytz==2024.2
150
+ # via pandas
151
+ pyyaml==6.0.2
152
+ # via
153
+ # gradio
154
+ # huggingface-hub
155
+ requests==2.32.3
156
+ # via huggingface-hub
157
+ rich==13.9.4
158
+ # via typer
159
+ ruff==0.8.6
160
+ # via gradio
161
+ safehttpx==0.1.6
162
+ # via gradio
163
+ semantic-version==2.10.0
164
+ # via gradio
165
+ setuptools==75.7.0
166
+ # via torch
167
+ shellingham==1.5.4
168
+ # via typer
169
+ six==1.17.0
170
+ # via python-dateutil
171
+ sniffio==1.3.1
172
+ # via anyio
173
+ starlette==0.41.3
174
+ # via
175
+ # fastapi
176
+ # gradio
177
+ sympy==1.13.1
178
+ # via torch
179
+ tomlkit==0.13.2
180
+ # via gradio
181
+ torch==2.5.1
182
+ # via
183
+ # saev-image-classification (pyproject.toml)
184
+ # torchvision
185
+ torchvision==0.20.1
186
+ # via saev-image-classification (pyproject.toml)
187
+ tqdm==4.67.1
188
+ # via huggingface-hub
189
+ triton==3.1.0
190
+ # via torch
191
+ typer==0.15.1
192
+ # via gradio
193
+ typing-extensions==4.12.2
194
+ # via
195
+ # anyio
196
+ # fastapi
197
+ # gradio
198
+ # gradio-client
199
+ # huggingface-hub
200
+ # pydantic
201
+ # pydantic-core
202
+ # torch
203
+ # typer
204
+ tzdata==2024.2
205
+ # via pandas
206
+ urllib3==2.3.0
207
+ # via requests
208
+ uvicorn==0.34.0
209
+ # via gradio
210
+ websockets==14.1
211
+ # via gradio-client
uv.lock ADDED
The diff for this file is too large to render. See raw diff