sanket03 commited on
Commit
432628d
·
1 Parent(s): 44e6430

added num of top classes as input parameter example

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -13,7 +13,7 @@ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')),
13
  classes = ('plane', 'car', 'bird', 'cat', 'deer',
14
  'dog', 'frog', 'horse', 'ship', 'truck')
15
 
16
- def inference(input_img, transparency = 0.5, target_layer_number = -1):
17
  transform = transforms.ToTensor()
18
  org_img = input_img
19
  input_img = transform(input_img)
@@ -36,16 +36,16 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
36
 
37
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
38
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
39
- examples = [["airplane.png", 0.5, -1],["bird.jpeg", 0.5, -1], ["car.jpeg", 0.5, -1], ["cat.png", 0.5, -1],
40
- ["deer.jpeg", 0.5, -1], ["dog.png", 0.5, -1], ["frog.jpeg", 0.5, -1], ["horse.png", 0.5, -1],
41
- ["ship.png", 0.5, -1], ["truck.jpeg", 0.5, -1]]
42
 
43
  demo = gr.Interface(
44
  inference,
45
  inputs = [gr.Image(shape=(32, 32), label="Input Image"),
46
- gr.Slider(0, 10, value = 1, step=1, label="Number of Top Classes"),
47
  gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
48
- gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
 
49
  outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
50
  title = title,
51
  description = description,
 
13
  classes = ('plane', 'car', 'bird', 'cat', 'deer',
14
  'dog', 'frog', 'horse', 'ship', 'truck')
15
 
16
+ def inference(input_img, transparency = 0.5, target_layer_number = -1, num_top_classes = 5):
17
  transform = transforms.ToTensor()
18
  org_img = input_img
19
  input_img = transform(input_img)
 
36
 
37
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
38
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
39
+ examples = [["airplane.png", 0.5, -1, 5],["bird.jpeg", 0.5, -1, 5], ["car.jpeg", 0.5, -1, 5], ["cat.png", 0.5, -1, 5],
40
+ ["deer.jpeg", 0.5, -1, 6], ["dog.png", 0.5, -1, 7], ["frog.jpeg", 0.5, -1, 4], ["horse.png", 0.5, -1, 7],
41
+ ["ship.png", 0.5, -1, 3], ["truck.jpeg", 0.5, -1, 8]]
42
 
43
  demo = gr.Interface(
44
  inference,
45
  inputs = [gr.Image(shape=(32, 32), label="Input Image"),
 
46
  gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
47
+ gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
48
+ gr.Slider(0, 10, value = 1, step=1, label="Number of Top Classes")],
49
  outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
50
  title = title,
51
  description = description,