added num of top classes as input parameter example
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')),
|
|
13 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
14 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
15 |
|
16 |
-
def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
17 |
transform = transforms.ToTensor()
|
18 |
org_img = input_img
|
19 |
input_img = transform(input_img)
|
@@ -36,16 +36,16 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
|
36 |
|
37 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
38 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
39 |
-
examples = [["airplane.png", 0.5, -1],["bird.jpeg", 0.5, -1], ["car.jpeg", 0.5, -1], ["cat.png", 0.5, -1],
|
40 |
-
["deer.jpeg", 0.5, -1], ["dog.png", 0.5, -1], ["frog.jpeg", 0.5, -1], ["horse.png", 0.5, -1],
|
41 |
-
["ship.png", 0.5, -1], ["truck.jpeg", 0.5, -1]]
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
inference,
|
45 |
inputs = [gr.Image(shape=(32, 32), label="Input Image"),
|
46 |
-
gr.Slider(0, 10, value = 1, step=1, label="Number of Top Classes"),
|
47 |
gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
|
48 |
-
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
|
|
49 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
|
50 |
title = title,
|
51 |
description = description,
|
|
|
13 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
14 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
15 |
|
16 |
+
def inference(input_img, transparency = 0.5, target_layer_number = -1, num_top_classes = 5):
|
17 |
transform = transforms.ToTensor()
|
18 |
org_img = input_img
|
19 |
input_img = transform(input_img)
|
|
|
36 |
|
37 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
38 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
39 |
+
examples = [["airplane.png", 0.5, -1, 5],["bird.jpeg", 0.5, -1, 5], ["car.jpeg", 0.5, -1, 5], ["cat.png", 0.5, -1, 5],
|
40 |
+
["deer.jpeg", 0.5, -1, 6], ["dog.png", 0.5, -1, 7], ["frog.jpeg", 0.5, -1, 4], ["horse.png", 0.5, -1, 7],
|
41 |
+
["ship.png", 0.5, -1, 3], ["truck.jpeg", 0.5, -1, 8]]
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
inference,
|
45 |
inputs = [gr.Image(shape=(32, 32), label="Input Image"),
|
|
|
46 |
gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
|
47 |
+
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
48 |
+
gr.Slider(0, 10, value = 1, step=1, label="Number of Top Classes")],
|
49 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
|
50 |
title = title,
|
51 |
description = description,
|