added num_top_classes as Input
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')),
|
|
13 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
14 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
15 |
|
16 |
-
def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
17 |
transform = transforms.ToTensor()
|
18 |
org_img = input_img
|
19 |
input_img = transform(input_img)
|
@@ -42,7 +42,10 @@ examples = [["airplane.png", 0.5, -1],["bird.jpeg", 0.5, -1], ["car.jpeg", 0.5,
|
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
inference,
|
45 |
-
inputs = [gr.Image(shape=(32, 32), label="Input Image"),
|
|
|
|
|
|
|
46 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
|
47 |
title = title,
|
48 |
description = description,
|
|
|
13 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
14 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
15 |
|
16 |
+
def inference(input_img, num_top_classes, transparency = 0.5, target_layer_number = -1):
|
17 |
transform = transforms.ToTensor()
|
18 |
org_img = input_img
|
19 |
input_img = transform(input_img)
|
|
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
inference,
|
45 |
+
inputs = [gr.Image(shape=(32, 32), label="Input Image"),
|
46 |
+
gr.Slider(0, 10, value = 0.5, label="Number of Top Classes"),
|
47 |
+
gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
|
48 |
+
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
|
49 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})],
|
50 |
title = title,
|
51 |
description = description,
|