sanket03 commited on
Commit
7e93243
·
1 Parent(s): ecaffdd

added app.py boiler code

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, torchvision
2
+ from torchvision import transforms
3
+ import numpy as np
4
+ import gradio as gr
5
+ from PIL import Image
6
+ from pytorch_grad_cam import GradCAM
7
+ from pytorch_grad_cam.utils.image import show_cam_on_image
8
+ from custom_resnet import Net
9
+
10
+ model = Net()
11
+ model.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu")), strict=False)
12
+
13
+ classes = ('plane', 'car', 'bird', 'cat', 'deer',
14
+ 'dog', 'frog', 'horse', 'ship', 'truck')
15
+
16
+ def inference(input_img, transparency = 0.5, target_layer_number = -1):
17
+ transform = transforms.ToTensor()
18
+ org_img = input_img
19
+ input_img = transform(input_img)
20
+ # input_img = input_img
21
+ input_img = input_img.unsqueeze(0)
22
+ outputs = model(input_img)
23
+ softmax = torch.nn.Softmax(dim=0)
24
+ o = softmax(outputs.flatten())
25
+ confidences = {classes[i]: float(o[i]) for i in range(10)}
26
+ _, prediction = torch.max(outputs, 1)
27
+ target_layers = [model.layer2[target_layer_number]]
28
+ cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
29
+ grayscale_cam = cam(input_tensor=input_img, targets=None)
30
+ grayscale_cam = grayscale_cam[0, :]
31
+ img = input_img.squeeze(0)
32
+ rgb_img = np.transpose(img, (1, 2, 0))
33
+ rgb_img = rgb_img.numpy()
34
+ visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
35
+ return confidences, visualization
36
+
37
+ title = "CIFAR10 trained on ResNet18 Model with GradCAM"
38
+ description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
39
+ examples = [["cat.png", 0.5, -1],["dog.png", 0.5, -1]]
40
+
41
+ demo = gr.Interface(
42
+ inference,
43
+ inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
44
+ outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
45
+ title = title,
46
+ description = description,
47
+ examples = examples,
48
+ )