added mean and sd code for the image
Browse files
app.py
CHANGED
@@ -26,12 +26,19 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1, num_top_c
|
|
26 |
top: Top Classes and Confidence level of the prediction
|
27 |
visualization: Grad Cam output
|
28 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# transform = transforms.ToTensor()
|
30 |
transform = transforms.Compose([
|
31 |
transforms.ToTensor(),
|
32 |
-
transforms.Normalize((
|
33 |
])
|
34 |
-
org_img = input_img
|
35 |
input_img = transform(input_img)
|
36 |
# input_img = input_img
|
37 |
input_img = input_img.unsqueeze(0)
|
|
|
26 |
top: Top Classes and Confidence level of the prediction
|
27 |
visualization: Grad Cam output
|
28 |
"""
|
29 |
+
|
30 |
+
org_img = input_img
|
31 |
+
# Convert the image to a numerical array
|
32 |
+
image_array = np.array(input_img, dtype=np.float32)
|
33 |
+
|
34 |
+
# Calculate the mean and standard deviation
|
35 |
+
mean_value = np.mean(image_array)
|
36 |
+
std_value = np.std(image_array)
|
37 |
# transform = transforms.ToTensor()
|
38 |
transform = transforms.Compose([
|
39 |
transforms.ToTensor(),
|
40 |
+
transforms.Normalize((mean_value,), (std_value,))
|
41 |
])
|
|
|
42 |
input_img = transform(input_img)
|
43 |
# input_img = input_img
|
44 |
input_img = input_img.unsqueeze(0)
|