Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import os | |
import io | |
import tempfile | |
import base64 | |
from audiorecorder import audiorecorder | |
from openai import OpenAI | |
from pydub import AudioSegment | |
os.environ['OPENAI_API_KEY'] = "" ###add the openai key here | |
client = OpenAI() | |
st.title("Whisper App") | |
audio = audiorecorder("Click to record", "Click to stop recording") | |
if len(audio) > 0: | |
temp_dir = tempfile.mkdtemp() | |
temp_file_path = os.path.join(temp_dir, 'temp_audio.wav') | |
audio.export(temp_file_path, format=".wav") | |
print(audio) | |
song = AudioSegment.from_wav("temp_audio.wav") | |
song.export("temp_audio", format = "flac") | |
######################## models | |
# model = pipeline("sentiment-analysis") | |
# st.title("Hugging Face Model Demo") | |
# input_text = st.text_input("Enter your text", "") | |
# if st.button("Analyze"): | |
# # Perform inference using the loaded model | |
# result = model(input_text) | |
# st.write("Prediction:", result[0]['label'], "| Score:", result[0]['score']) | |