|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "t-tech/T-pro-it-2.0" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
def chat(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="T-Pro IT 2.0 Chat") |
|
iface.launch() |