Spaces:
Sleeping
Sleeping
| """Gradio demo for schemist.""" | |
| from typing import Iterable, List, Union | |
| from io import TextIOWrapper | |
| import os | |
| os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue" | |
| from carabiner import cast, print_err | |
| from carabiner.pd import read_table | |
| import gradio as gr | |
| import nemony as nm | |
| import numpy as np | |
| import pandas as pd | |
| from rdkit.Chem import Draw, Mol | |
| import schemist as sch | |
| from schemist.converting import ( | |
| _TO_FUNCTIONS, | |
| _FROM_FUNCTIONS, | |
| convert_string_representation, | |
| _x2mol, | |
| ) | |
| from schemist.tables import converter | |
| def load_input_data(file: TextIOWrapper) -> pd.DataFrame: | |
| df = read_table(file.name) | |
| string_cols = list(df.select_dtypes(exclude=[np.number])) | |
| df = gr.Dataframe(value=df, visible=True) | |
| return df, gr.Dropdown(choices=string_cols, interactive=True) | |
| def _clean_split_input(strings: str) -> List[str]: | |
| return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")] | |
| def _convert_input( | |
| strings: str, | |
| input_representation: str = 'smiles', | |
| output_representation: Union[Iterable[str], str] = 'smiles' | |
| ) -> List[str]: | |
| strings = _clean_split_input(strings) | |
| return cast(map(str, convert_string_representation( | |
| strings=strings, | |
| input_representation=input_representation, | |
| output_representation=output_representation, | |
| )), to=list) | |
| def convert_one( | |
| strings: str, | |
| input_representation: str = 'smiles', | |
| output_representation: Union[Iterable[str], str] = 'smiles' | |
| ): | |
| df = pd.DataFrame({ | |
| input_representation: _clean_split_input(strings), | |
| }) | |
| return gr.DataFrame( | |
| convert_file( | |
| df=df, | |
| column=input_representation, | |
| input_representation=input_representation, | |
| output_representation=output_representation, | |
| ), | |
| visible=True | |
| ) | |
| def convert_file( | |
| df: pd.DataFrame, | |
| column: str = 'smiles', | |
| input_representation: str = 'smiles', | |
| output_representation: Union[str, Iterable[str]] = 'smiles' | |
| ): | |
| message = f"Converting from {input_representation} to {output_representation}..." | |
| print_err(message) | |
| gr.Info(message, duration=5) | |
| print_err(df) | |
| errors, df = converter( | |
| df=df, | |
| column=column, | |
| input_representation=input_representation, | |
| output_representation=output_representation, | |
| ) | |
| df = df[ | |
| cast(output_representation, to=list) + | |
| [col for col in df if col not in output_representation] | |
| ] | |
| all_err = sum(err for key, err in errors.items()) | |
| message = ( | |
| f"Converted {df.shape[0]} molecules from " | |
| f"{input_representation} to {output_representation} " | |
| f"with {all_err} errors!" | |
| ) | |
| print_err(message) | |
| gr.Info(message, duration=5) | |
| return df | |
| def draw_one( | |
| strings: Union[Iterable[str], str], | |
| input_representation: str = 'smiles' | |
| ): | |
| smiles = _convert_input(strings, input_representation, "inchikey") | |
| ids = _convert_input(strings, input_representation, "id") | |
| mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list) | |
| if isinstance(mols, Mol): | |
| mols = [mols] | |
| return Draw.MolsToGridImage( | |
| mols, | |
| molsPerRow=min(3, len(mols)), | |
| subImgSize=(300, 300), | |
| legends=[f"{sm}\n{_id}" for sm, _id in zip(smiles, ids)], | |
| ) | |
| def download_table( | |
| df: pd.DataFrame | |
| ) -> str: | |
| df_hash = nm.hash(pd.util.hash_pandas_object(df).values) | |
| filename = f"converted-{df_hash}.csv" | |
| df.to_csv(filename, index=False) | |
| return gr.DownloadButton(value=filename, visible=True) | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # Chemical string format converter | |
| """ | |
| ) | |
| with gr.Tab(label="Paste one per line"): | |
| input_line = gr.Textbox( | |
| label="Input", | |
| placeholder="Paste your molecule here, one per line", | |
| lines=2, | |
| interactive=True, | |
| submit_btn=True, | |
| ) | |
| input_format_single = gr.Dropdown( | |
| label="Input string format", | |
| choices=list(_FROM_FUNCTIONS), | |
| value="smiles", | |
| interactive=True, | |
| ) | |
| output_format_single = gr.CheckboxGroup( | |
| label="Output format", | |
| choices=list(_TO_FUNCTIONS), | |
| value=["id", "pubchem_name"], | |
| interactive=True, | |
| ) | |
| download_single = gr.DownloadButton( | |
| label="Download converted data", | |
| visible=False, | |
| ) | |
| with gr.Row(): | |
| output_line = gr.DataFrame( | |
| label="Converted", | |
| interactive=False, | |
| visible=False, | |
| ) | |
| drawing = gr.Image(label="Chemical structures") | |
| gr.on( | |
| [ | |
| # go_button.click, | |
| input_line.submit, | |
| ], | |
| fn=convert_one, | |
| inputs=[ | |
| input_line, | |
| input_format_single, | |
| output_format_single, | |
| ], | |
| outputs={ | |
| output_line, | |
| } | |
| ).then( | |
| draw_one, | |
| inputs=[ | |
| input_line, | |
| input_format_single, | |
| ], | |
| outputs=drawing, | |
| ).then( | |
| download_table, | |
| inputs=output_line, | |
| outputs=download_single | |
| ) | |
| with gr.Tab("Convert a file"): | |
| input_file = gr.File( | |
| label="Upload a table of chemical compounds here", | |
| file_types=[".xlsx", ".csv", ".tsv", ".txt"], | |
| ) | |
| with gr.Row(): | |
| input_column = gr.Dropdown( | |
| label="Input column name", | |
| choices=[], | |
| ) | |
| input_format = gr.Dropdown( | |
| label="Input string format", | |
| choices=list(_FROM_FUNCTIONS), | |
| value="smiles", | |
| interactive=True, | |
| ) | |
| output_format = gr.CheckboxGroup( | |
| label="Output format", | |
| choices=list(_TO_FUNCTIONS), | |
| value=["id", "selfies"], | |
| interactive=True, | |
| ) | |
| go_button2 = gr.Button( | |
| value="Convert molecules!", | |
| ) | |
| download = gr.DownloadButton( | |
| label="Download converted data", | |
| visible=False, | |
| ) | |
| input_data = gr.Dataframe( | |
| label="Input data", | |
| max_height=100, | |
| visible=False, | |
| interactive=False, | |
| ) | |
| input_file.upload( | |
| load_input_data, | |
| inputs=[input_file], | |
| outputs=[input_data, input_column] | |
| ) | |
| go_button2.click( | |
| convert_file, | |
| inputs=[ | |
| input_data, | |
| input_column, | |
| input_format, | |
| output_format, | |
| ], | |
| outputs={ | |
| input_data, | |
| } | |
| ).then( | |
| download_table, | |
| inputs=input_data, | |
| outputs=download | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch(share=True) | |