Upload 3 files
Browse files- app.py +27 -0
- best.pt +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model_path = "./models/best.pt"
|
9 |
+
model = YOLO(model_path)
|
10 |
+
|
11 |
+
# Streamlit app
|
12 |
+
st.title("YOLOv11 Object Detection")
|
13 |
+
st.write("Upload an image and let the model detect objects.")
|
14 |
+
|
15 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
16 |
+
if uploaded_file:
|
17 |
+
# Read and display the image
|
18 |
+
image = Image.open(uploaded_file)
|
19 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
20 |
+
|
21 |
+
# Perform prediction
|
22 |
+
with st.spinner("Processing..."):
|
23 |
+
results = model.predict(np.array(image))
|
24 |
+
|
25 |
+
# Display results
|
26 |
+
st.write("Detection Results:")
|
27 |
+
st.image(results[0].plot(), caption="Detections", use_column_width=True)
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e40b1f30fd772a3e9d2045552f5d47e2820d397e8793d8185d474b416469601c
|
3 |
+
size 19178067
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
ultralytics
|
3 |
+
Pillow
|
4 |
+
numpy
|