seayala's picture
Update app.py
21e2400 verified
raw
history blame
1.55 kB
import gradio as gr
import tensorflow as tf
import librosa
import numpy as np
# Diccionario de etiquetas
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
def extract_features(file_name):
try:
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
mfccsscaled = np.mean(mfccs.T,axis=0)
except Exception as e:
print(f"Error encountered while parsing file: {file_name}")
print(e) # Imprime la excepci贸n completa
return None
return mfccsscaled
def classify_audio(audio_file):
print(f"Tipo de audio_file: {type(audio_file)}") # Deber铆a imprimir <class 'str'>
# Preprocesa el audio directamente
features = extract_features(audio_file)
if features is None:
return "Error al procesar el audio"
features = features.reshape(1, -1)
# Carga el modelo (aseg煤rate que 'my_model.h5' est茅 en el mismo directorio)
model = tf.keras.models.load_model('my_model.h5', compile=False)
with tf.device('/CPU:0'):
prediction = model.predict(features)
predicted_label_index = np.argmax(prediction)
predicted_label = labels[predicted_label_index]
return predicted_label
iface = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="Clasificaci贸n de audio simple",
description="Sube un archivo de audio para clasificarlo."
)
iface.launch()