Sébastien De Greef commited on
Commit
861a9e6
·
1 Parent(s): d473058

Update main.py and start_server.sh scripts

Browse files
Files changed (2) hide show
  1. main.py +46 -19
  2. start_server.sh +2 -2
main.py CHANGED
@@ -1,7 +1,7 @@
1
  from langchain.schema import AIMessage, HumanMessage
2
  import gradio as gr
3
  from langchain_community.llms import Ollama
4
-
5
  def parse_model_names(path):
6
  """Parses the model file to extract value-label pairs for the dropdown."""
7
  choices = []
@@ -19,39 +19,66 @@ models = parse_model_names("models.txt")
19
 
20
 
21
  def predict(message, history, model):
22
- print("Predicting", message, history, models[model][1]),
23
  llm = Ollama(model=models[model][1], timeout=1000) # Instantiate Ollama with the selected model
24
  history_langchain_format = []
25
- for human, ai in history:
26
- history_langchain_format.append(HumanMessage(content=human))
27
- history_langchain_format.append(AIMessage(content=ai))
28
- history_langchain_format.append(HumanMessage(content=message))
29
  try:
30
  chat_response = llm.invoke(history_langchain_format)
31
  except Exception as e: # Use a general exception handler here
32
  chat_response = "Error: " + str(e)
33
-
34
- return chat_response
35
 
36
 
37
 
38
- with gr.Blocks(fill_height=True) as demo:
39
- with gr.Row():
40
- model_dropdown = gr.Dropdown(label="Select LLM Model", choices=models, info="Select the model you want to chat with", type="index")
41
 
42
- # We use a state variable to track the current model
43
- model_state = gr.State(value=model_dropdown.value)
44
 
45
- def update_model(selected_model):
46
- print("Model selected", selected_model)
47
- model_state.value = selected_model
48
- return selected_model
49
 
50
 
51
- chat = gr.ChatInterface(predict,
52
- additional_inputs=[ model_dropdown ],
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  )
 
 
 
 
 
 
 
 
 
 
55
 
56
 
57
  if __name__ == "__main__":
 
1
  from langchain.schema import AIMessage, HumanMessage
2
  import gradio as gr
3
  from langchain_community.llms import Ollama
4
+ import time
5
  def parse_model_names(path):
6
  """Parses the model file to extract value-label pairs for the dropdown."""
7
  choices = []
 
19
 
20
 
21
  def predict(message, history, model):
22
+ print("Predicting", message, history, model),
23
  llm = Ollama(model=models[model][1], timeout=1000) # Instantiate Ollama with the selected model
24
  history_langchain_format = []
25
+ for m in message:
26
+ history_langchain_format.append(HumanMessage(content=m[0]))
27
+ if m[1] is not None:
28
+ history_langchain_format.append(AIMessage(content=m[1]))
29
  try:
30
  chat_response = llm.invoke(history_langchain_format)
31
  except Exception as e: # Use a general exception handler here
32
  chat_response = "Error: " + str(e)
33
+
34
+ return [(chat_response, )]
35
 
36
 
37
 
38
+ # with gr.Blocks(fill_height=True) as demo:
39
+ # with gr.Row():
 
40
 
 
 
41
 
42
+ # def update_model(selected_model):
43
+ # print("Model selected", selected_model)
44
+ # model_state.value = selected_model
45
+ # return selected_model
46
 
47
 
48
+ # chat = gr.ChatInterface(predict,
49
+ # additional_inputs=[ model_dropdown ],
50
 
51
+ # )
52
+
53
+
54
+ def print_like_dislike(x: gr.LikeData):
55
+ print(x.index, x.value, x.liked)
56
+
57
+ def add_message(history, message):
58
+ for x in message["files"]:
59
+ history.append(((x,), None))
60
+ if message["text"] is not None:
61
+ history.append((message["text"], None))
62
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
63
+
64
+ with gr.Blocks() as demo:
65
+ model_dropdown = gr.Dropdown(label="Select LLM Model", choices=models, info="Select the model you want to chat with", type="index")
66
+ model_state = gr.State(value=model_dropdown.value)
67
+ chatbot = gr.Chatbot(
68
+ [],
69
+ elem_id="chatbot",
70
+ bubble_full_width=False
71
  )
72
+
73
+ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
74
+
75
+ chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
76
+ bot_msg = chat_msg.then(predict, [chatbot, chat_input, model_dropdown], chatbot, api_name="bot_response")
77
+ bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
78
+
79
+ chatbot.like(print_like_dislike, None, None)
80
+
81
+ demo.queue()
82
 
83
 
84
  if __name__ == "__main__":
start_server.sh CHANGED
@@ -6,7 +6,7 @@ ollama pull llama3:8b > /dev/null 2>&1
6
  ollama pull gemma:2b > /dev/null 2>&1
7
  ollama pull gemma:7b > /dev/null 2>&1
8
 
9
- ollama create mistral4k:7b --file .\mistral7b.Modelfile > /dev/null 2>&1
10
- ollama create llama38k:8b --file .\llama38b.Modelfile > /dev/null 2>&1
11
 
12
  python main.py
 
6
  ollama pull gemma:2b > /dev/null 2>&1
7
  ollama pull gemma:7b > /dev/null 2>&1
8
 
9
+ ollama create mistral4k:7b --file /home/user/app/mistral7b.Modelfile
10
+ ollama create llama38k:8b --file /home/user/app/llama38b.Modelfile
11
 
12
  python main.py