Update model/model.py
Browse files- model/model.py +21 -20
model/model.py
CHANGED
|
@@ -1,35 +1,36 @@
|
|
| 1 |
-
from transformers import AutoModel, AutoModelForImageClassification
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import numpy as np
|
| 4 |
import torch
|
| 5 |
-
|
| 6 |
-
import torchvision.transforms as
|
|
|
|
| 7 |
|
| 8 |
def predict(image_path):
|
| 9 |
model = AutoModelForImageClassification.from_pretrained('sensei-ml/concrete_crack_images_classification')
|
| 10 |
model.eval()
|
| 11 |
|
| 12 |
with torch.no_grad():
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
outputs = model(input_tensor)
|
| 26 |
logits = outputs.logits
|
| 27 |
probabilities = torch.nn.functional.softmax(logits, dim=1)[0]
|
| 28 |
_, predicted_label = torch.max(logits, 1)
|
| 29 |
-
predicted_label = predicted_label.item()
|
| 30 |
-
|
|
|
|
| 31 |
labels = ['Negative', 'Positive']
|
| 32 |
probability_dict = {}
|
| 33 |
for i, prob in enumerate(probabilities):
|
| 34 |
-
|
|
|
|
| 35 |
return probability_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torchvision import transforms
|
| 3 |
+
import torchvision.transforms.functional as F
|
| 4 |
+
from transformers import AutoModelForImageClassification
|
| 5 |
|
| 6 |
def predict(image_path):
|
| 7 |
model = AutoModelForImageClassification.from_pretrained('sensei-ml/concrete_crack_images_classification')
|
| 8 |
model.eval()
|
| 9 |
|
| 10 |
with torch.no_grad():
|
| 11 |
+
# Convertir el array de NumPy a un tensor de PyTorch
|
| 12 |
+
image_tensor = torch.from_numpy(image_path).permute(2, 0, 1).float() # Cambiar dimensiones de (H, W, C) a (C, H, W)
|
| 13 |
+
|
| 14 |
+
# Redimensionar la imagen usando funciones de transformaci贸n que soporten tensores
|
| 15 |
+
image_tensor = F.resize(image_tensor, [227, 227])
|
| 16 |
+
|
| 17 |
+
# Normalizaci贸n
|
| 18 |
+
transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 19 |
+
|
| 20 |
+
# Aplicar la normalizaci贸n
|
| 21 |
+
input_tensor = transform(image_tensor).unsqueeze(0) # A帽adir la dimensi贸n del batch
|
| 22 |
+
|
| 23 |
+
# Hacer predicciones
|
| 24 |
outputs = model(input_tensor)
|
| 25 |
logits = outputs.logits
|
| 26 |
probabilities = torch.nn.functional.softmax(logits, dim=1)[0]
|
| 27 |
_, predicted_label = torch.max(logits, 1)
|
| 28 |
+
predicted_label = predicted_label.item()
|
| 29 |
+
|
| 30 |
+
# Definir las etiquetas
|
| 31 |
labels = ['Negative', 'Positive']
|
| 32 |
probability_dict = {}
|
| 33 |
for i, prob in enumerate(probabilities):
|
| 34 |
+
probability_dict[labels[i]] = prob.item()
|
| 35 |
+
|
| 36 |
return probability_dict
|