File size: 18,301 Bytes
f113387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
"""
This code is based on Facebook's HDemucs code: https://github.com/facebookresearch/demucs
"""
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from src.models.utils import capture_init
from src.models.spec import spectro, ispectro
from src.models.modules import DConv, ScaledEmbedding, FTB
import logging
logger = logging.getLogger(__name__)
def rescale_conv(conv, reference):
std = conv.weight.std().detach()
scale = (std / reference) ** 0.5
conv.weight.data /= scale
if conv.bias is not None:
conv.bias.data /= scale
def rescale_module(module, reference):
for sub in module.modules():
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
rescale_conv(sub, reference)
class HEncLayer(nn.Module):
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, is_first=False, freq_attn=False, freq_dim=None, norm=True, context=0,
dconv_kw={}, pad=True,
rewrite=True):
"""Encoder layer. This used both by the time and the frequency branch.
Args:
chin: number of input channels.
chout: number of output channels.
norm_groups: number of groups for group norm.
empty: used to make a layer with just the first conv. this is used
before merging the time and freq. branches.
freq: this is acting on frequencies.
dconv: insert DConv residual branches.
norm: use GroupNorm.
context: context size for the 1x1 conv.
dconv_kw: list of kwargs for the DConv class.
pad: pad the input. Padding is done so that the output size is
always the input size / stride.
rewrite: add 1x1 conv at the end of the layer.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if stride == 1 and kernel_size % 2 == 0 and kernel_size > 1:
kernel_size -= 1
if pad:
pad = (kernel_size - stride) // 2
else:
pad = 0
klass = nn.Conv2d
self.chin = chin
self.chout = chout
self.freq = freq
self.kernel_size = kernel_size
self.stride = stride
self.empty = empty
self.freq_attn = freq_attn
self.freq_dim = freq_dim
self.norm = norm
self.pad = pad
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
if pad != 0:
pad = [pad, 0]
# klass = nn.Conv2d
else:
kernel_size = [1, kernel_size]
stride = [1, stride]
if pad != 0:
pad = [0, pad]
self.is_first = is_first
if is_first:
self.pre_conv = nn.Conv2d(chin, chout, [1, 1])
chin = chout
if self.freq_attn:
self.freq_attn_block = FTB(input_dim=freq_dim, in_channel=chin)
self.conv = klass(chin, chout, kernel_size, stride, pad)
if self.empty:
return
self.norm1 = norm_fn(chout)
self.rewrite = None
if rewrite:
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
self.norm2 = norm_fn(2 * chout)
self.dconv = None
if dconv:
self.dconv = DConv(chout, **dconv_kw)
def forward(self, x, inject=None):
"""
`inject` is used to inject the result from the time branch into the frequency branch,
when both have the same stride.
"""
if not self.freq:
le = x.shape[-1]
if not le % self.stride == 0:
x = F.pad(x, (0, self.stride - (le % self.stride)))
if self.is_first:
x = self.pre_conv(x)
if self.freq_attn:
x = self.freq_attn_block(x)
x = self.conv(x)
x = F.gelu(self.norm1(x))
if self.dconv:
x = self.dconv(x)
if self.rewrite:
x = self.norm2(self.rewrite(x))
x = F.glu(x, dim=1)
return x
class HDecLayer(nn.Module):
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
context_freq=True, rewrite=True):
"""
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if stride == 1 and kernel_size % 2 == 0 and kernel_size > 1:
kernel_size -= 1
if pad:
pad = (kernel_size - stride) // 2
else:
pad = 0
self.pad = pad
self.last = last
self.freq = freq
self.chin = chin
self.empty = empty
self.stride = stride
self.kernel_size = kernel_size
self.norm = norm
self.context_freq = context_freq
klass = nn.Conv2d
klass_tr = nn.ConvTranspose2d
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
else:
kernel_size = [1, kernel_size]
stride = [1, stride]
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
self.norm2 = norm_fn(chout)
if self.empty:
return
self.rewrite = None
if rewrite:
if context_freq:
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
else:
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
[0, context])
self.norm1 = norm_fn(2 * chin)
self.dconv = None
if dconv:
self.dconv = DConv(chin, **dconv_kw)
def forward(self, x, skip, length):
if self.freq and x.dim() == 3:
B, C, T = x.shape
x = x.view(B, self.chin, -1, T)
if not self.empty:
x = torch.cat([x, skip], dim=1)
if self.rewrite:
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
else:
y = x
if self.dconv:
y = self.dconv(y)
else:
y = x
assert skip is None
z = self.norm2(self.conv_tr(y))
if self.freq:
if self.pad:
z = z[..., self.pad:-self.pad, :]
else:
z = z[..., self.pad:self.pad + length]
assert z.shape[-1] == length, (z.shape[-1], length)
if not self.last:
z = F.gelu(z)
return z
class Aero(nn.Module):
"""
Deep model for Audio Super Resolution.
"""
@capture_init
def __init__(self,
# Channels
in_channels=1,
out_channels=1,
audio_channels=2,
channels=48,
growth=2,
# STFT
nfft=512,
hop_length=64,
end_iters=0,
cac=True,
# Main structure
rewrite=True,
hybrid=False,
hybrid_old=False,
# Frequency branch
freq_emb=0.2,
emb_scale=10,
emb_smooth=True,
# Convolutions
kernel_size=8,
strides=[4, 4, 2, 2],
context=1,
context_enc=0,
freq_ends=4,
enc_freq_attn=4,
# Normalization
norm_starts=2,
norm_groups=4,
# DConv residual branch
dconv_mode=1,
dconv_depth=2,
dconv_comp=4,
dconv_time_attn=2,
dconv_lstm=2,
dconv_init=1e-3,
# Weight init
rescale=0.1,
# Metadata
lr_sr=4000,
hr_sr=16000,
spec_upsample=True,
act_func='snake',
debug=False):
"""
Args:
sources (list[str]): list of source names.
audio_channels (int): input/output audio channels.
channels (int): initial number of hidden channels.
growth: increase the number of hidden channels by this factor at each layer.
nfft: number of fft bins. Note that changing this require careful computation of
various shape parameters and will not work out of the box for hybrid models.
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
cac: uses complex as channels, i.e. complex numbers are 2 channels each
in input and output. no further processing is done before ISTFT.
depth (int): number of layers in the encoder and in the decoder.
rewrite (bool): add 1x1 convolution to each layer.
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
hybrid_old: some models trained for MDX had a padding bug. This replicates
this bug to avoid retraining them.
freq_emb: add frequency embedding after the first frequency layer if > 0,
the actual value controls the weight of the embedding.
emb_scale: equivalent to scaling the embedding learning rate
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
kernel_size: kernel_size for encoder and decoder layers.
stride: stride for encoder and decoder layers.
context: context for 1x1 conv in the decoder.
context_enc: context for 1x1 conv in the encoder.
norm_starts: layer at which group norm starts being used.
decoder layers are numbered in reverse order.
norm_groups: number of groups for group norm.
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
dconv_depth: depth of residual DConv branch.
dconv_comp: compression of DConv branch.
dconv_freq_attn: adds freq attention layers in DConv branch starting at this layer.
dconv_time_attn: adds time attention layers in DConv branch starting at this layer.
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
dconv_init: initial scale for the DConv branch LayerScale.
rescale: weight recaling trick
lr_sr: source low-resolution sample-rate
hr_sr: target high-resolution sample-rate
spec_upsample: if true, upsamples in the spectral domain, otherwise performs sinc-interpolation beforehand
act_func: 'snake'/'relu'
debug: if true, prints out input dimensions throughout model layers.
"""
super().__init__()
self.cac = cac
self.in_channels = in_channels
self.out_channels = out_channels
self.audio_channels = audio_channels
self.kernel_size = kernel_size
self.context = context
self.strides = strides
self.depth = len(strides)
self.channels = channels
self.lr_sr = lr_sr
self.hr_sr = hr_sr
self.spec_upsample = spec_upsample
self.scale = hr_sr / lr_sr if self.spec_upsample else 1
self.nfft = nfft
self.hop_length = int(hop_length // self.scale) # this is for the input signal
self.win_length = int(self.nfft // self.scale) # this is for the input signal
self.end_iters = end_iters
self.freq_emb = None
self.hybrid = hybrid
self.hybrid_old = hybrid_old
self.debug = debug
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
chin_z = self.in_channels
if self.cac:
chin_z *= 2
chout_z = channels
freqs = nfft // 2
for index in range(self.depth):
freq_attn = index >= enc_freq_attn
lstm = index >= dconv_lstm
time_attn = index >= dconv_time_attn
norm = index >= norm_starts
freq = index <= freq_ends
stri = strides[index]
ker = kernel_size
pad = True
if freq and freqs < kernel_size:
ker = freqs
kw = {
'kernel_size': ker,
'stride': stri,
'freq': freq,
'pad': pad,
'norm': norm,
'rewrite': rewrite,
'norm_groups': norm_groups,
'dconv_kw': {
'lstm': lstm,
'time_attn': time_attn,
'depth': dconv_depth,
'compress': dconv_comp,
'init': dconv_init,
'act_func': act_func,
'reshape': True,
'freq_dim': freqs // strides[index] if freq else freqs
}
}
kw_dec = dict(kw)
enc = HEncLayer(chin_z, chout_z,
dconv=dconv_mode & 1, context=context_enc,
is_first=index == 0, freq_attn=freq_attn, freq_dim=freqs,
**kw)
self.encoder.append(enc)
if index == 0:
chin = self.out_channels
chin_z = chin
if self.cac:
chin_z *= 2
dec = HDecLayer(2 * chout_z, chin_z, dconv=dconv_mode & 2,
last=index == 0, context=context, **kw_dec)
self.decoder.insert(0, dec)
chin_z = chout_z
chout_z = int(growth * chout_z)
if freq:
freqs //= strides[index]
if index == 0 and freq_emb:
self.freq_emb = ScaledEmbedding(
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
self.freq_emb_scale = freq_emb
if rescale:
rescale_module(self, reference=rescale)
def _spec(self, x, scale=False):
if np.mod(x.shape[-1], self.hop_length):
x = F.pad(x, (0, self.hop_length - np.mod(x.shape[-1], self.hop_length)))
hl = self.hop_length
nfft = self.nfft
win_length = self.win_length
if scale:
hl = int(hl * self.scale)
win_length = int(win_length * self.scale)
z = spectro(x, nfft, hl, win_length=win_length)[..., :-1, :]
return z
def _ispec(self, z):
hl = int(self.hop_length * self.scale)
win_length = int(self.win_length * self.scale)
z = F.pad(z, (0, 0, 0, 1))
x = ispectro(z, hl, win_length=win_length)
return x
def _move_complex_to_channels_dim(self, z):
B, C, Fr, T = z.shape
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
m = m.reshape(B, C * 2, Fr, T)
return m
def _convert_to_complex(self, x):
"""
:param x: signal of shape [Batch, Channels, 2, Freq, TimeFrames]
:return: complex signal of shape [Batch, Channels, Freq, TimeFrames]
"""
out = x.permute(0, 1, 3, 4, 2)
out = torch.view_as_complex(out.contiguous())
return out
def forward(self, mix, return_spec=False, return_lr_spec=False):
x = mix
length = x.shape[-1]
if self.debug:
logger.info(f'hdemucs in shape: {x.shape}')
z = self._spec(x)
x = self._move_complex_to_channels_dim(z)
if self.debug:
logger.info(f'x spec shape: {x.shape}')
B, C, Fq, T = x.shape
# unlike previous Demucs, we always normalize because it is easier.
mean = x.mean(dim=(1, 2, 3), keepdim=True)
std = x.std(dim=(1, 2, 3), keepdim=True)
x = (x - mean) / (1e-5 + std)
# okay, this is a giant mess I know...
saved = [] # skip connections, freq.
lengths = [] # saved lengths to properly remove padding, freq branch.
for idx, encode in enumerate(self.encoder):
lengths.append(x.shape[-1])
inject = None
x = encode(x, inject)
if self.debug:
logger.info(f'encoder {idx} out shape: {x.shape}')
if idx == 0 and self.freq_emb is not None:
# add frequency embedding to allow for non equivariant convolutions
# over the frequency axis.
frs = torch.arange(x.shape[-2], device=x.device)
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
x = x + self.freq_emb_scale * emb
saved.append(x)
x = torch.zeros_like(x)
# initialize everything to zero (signal will go through u-net skips).
for idx, decode in enumerate(self.decoder):
skip = saved.pop(-1)
x = decode(x, skip, lengths.pop(-1))
if self.debug:
logger.info(f'decoder {idx} out shape: {x.shape}')
# Let's make sure we used all stored skip connections.
assert len(saved) == 0
x = x.view(B, self.out_channels, -1, Fq, T)
x = x * std[:, None] + mean[:, None]
if self.debug:
logger.info(f'post view shape: {x.shape}')
x_spec_complex = self._convert_to_complex(x)
if self.debug:
logger.info(f'x_spec_complex shape: {x_spec_complex.shape}')
x = self._ispec(x_spec_complex)
if self.debug:
logger.info(f'hdemucs out shape: {x.shape}')
x = x[..., :int(length * self.scale)]
if self.debug:
logger.info(f'hdemucs out - trimmed shape: {x.shape}')
if return_spec:
if return_lr_spec:
return x, x_spec_complex, z
else:
return x, x_spec_complex
return x |