Upload app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,85 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
from torchaudio.functional import resample
|
5 |
-
|
6 |
-
from processAudio import upscaleAudio
|
7 |
-
|
8 |
-
class Object(object):
|
9 |
-
pass
|
10 |
-
|
11 |
-
with gr.Blocks(theme=gr.themes.Default().set(body_background_fill="#CCEEFF")) as layout:
|
12 |
-
with gr.Row():
|
13 |
-
gr.Markdown("<h2>Broadcast Audio Upscaler</h2>")
|
14 |
-
with gr.Row():
|
15 |
-
with open("html/directions.html", "r") as directionsHtml:
|
16 |
-
gr.Markdown(directionsHtml.read())
|
17 |
-
with gr.Row():
|
18 |
-
modelSelect = gr.Dropdown(
|
19 |
-
[
|
20 |
-
["FM Radio Super Resolution","FM_Radio_SR.th"],
|
21 |
-
["AM Radio Super Resolution (Beta)","AM_Radio_SR.th"],
|
22 |
-
["Telephone Super Resolution (Beta)","Telephone_SR.th"]
|
23 |
-
],
|
24 |
-
label="Select Model:",
|
25 |
-
value="FM_Radio_SR.th",
|
26 |
-
)
|
27 |
-
with gr.Row():
|
28 |
-
with gr.Column():
|
29 |
-
audioFileSelect = gr.Audio(label="Audio File (Mono or Stereo, Max 6 Minutes):",sources="upload", max_length=360)
|
30 |
-
with gr.Column():
|
31 |
-
audioOutput = gr.Audio(show_download_button=True, label="Restored Audio:", sources=[], max_length=360)
|
32 |
-
with gr.Row():
|
33 |
-
with gr.Column():
|
34 |
-
submit = gr.Button("Process Audio", variant="primary", interactive=False)
|
35 |
-
with gr.Row():
|
36 |
-
with gr.Accordion("More Information:", open=False):
|
37 |
-
with open("html/information.html", "r") as informationHtml:
|
38 |
-
gr.Markdown(informationHtml.read())
|
39 |
-
|
40 |
-
@audioFileSelect.input(inputs=audioFileSelect, outputs=[submit, audioFileSelect])
|
41 |
-
def audioFileSelectChanged(audioData: gr.Audio):
|
42 |
-
#Audio exists and is mono or stereo
|
43 |
-
if audioData is None:
|
44 |
-
return gr.update(interactive=False), None
|
45 |
-
if len(audioData[1].shape) == 1:
|
46 |
-
return gr.update(interactive=True), audioData
|
47 |
-
if audioData[1].shape[1] > 2:
|
48 |
-
gr.Warning("Audio with more than 2 channels is not supported.")
|
49 |
-
return gr.update(interactive=False), None
|
50 |
-
return gr.update(interactive=True), audioData
|
51 |
-
|
52 |
-
|
53 |
-
@submit.click(inputs=[modelSelect, audioFileSelect], outputs=audioOutput)
|
54 |
-
def processAudio(model: gr.Dropdown, audioData: gr.Audio):
|
55 |
-
if audioData is None:
|
56 |
-
raise gr.Error("Load an audio file.")
|
57 |
-
return None
|
58 |
-
elif len(audioData[1].shape) == 1: #Convert mono to stereo
|
59 |
-
lrAudio = torch.tensor(np.array([
|
60 |
-
audioData[1].copy().astype(np.float32)/32768,
|
61 |
-
audioData[1].copy().astype(np.float32)/32768
|
62 |
-
]))
|
63 |
-
elif audioData[1].shape[1] > 2:
|
64 |
-
raise gr.Error("Audio with more than 2 channels is not supported.")
|
65 |
-
return None
|
66 |
-
else: #re-order channel data from [samples, 2] to [2, samples]
|
67 |
-
lrAudio = torch.tensor(audioData[1].copy().astype(np.float32)/32768).transpose(0,1)
|
68 |
-
if audioData[0] != 44100:
|
69 |
-
lrAudio = resample(lrAudio, audioData[0], 44100)
|
70 |
-
model_name, experiment_file = getModelInfo(model)
|
71 |
-
hrAudio=upscaleAudio(lrAudio, model, model_name=model_name, experiment_file=experiment_file)
|
72 |
-
hrAudio=hrAudio / max(hrAudio.abs().max().item(), 1)
|
73 |
-
outAudio=(hrAudio*32767).numpy().astype(np.int16).transpose(1,0)
|
74 |
-
return tuple([44100, outAudio])
|
75 |
-
|
76 |
-
def getModelInfo(modelFilename: str):
|
77 |
-
if(modelFilename == "FM_Radio_SR.th"):
|
78 |
-
return "aero", "aero_441-441_512_256.yaml"
|
79 |
-
if(modelFilename == "AM_Radio_SR.th"):
|
80 |
-
return "aero", "aero_441-441_512_256.yaml"
|
81 |
-
if(modelFilename == "Telephone_SR.th"):
|
82 |
-
return "aero", "aero_441-441_512_256.yaml"
|
83 |
-
return "aero", "aero_441-441_512_256.yaml"
|
84 |
-
|
85 |
layout.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from torchaudio.functional import resample
|
5 |
+
|
6 |
+
from processAudio import upscaleAudio
|
7 |
+
|
8 |
+
class Object(object):
|
9 |
+
pass
|
10 |
+
|
11 |
+
with gr.Blocks(theme=gr.themes.Default().set(body_background_fill="#CCEEFF")) as layout:
|
12 |
+
with gr.Row():
|
13 |
+
gr.Markdown("<h2>Broadcast Audio Upscaler</h2>")
|
14 |
+
with gr.Row():
|
15 |
+
with open("html/directions.html", "r") as directionsHtml:
|
16 |
+
gr.Markdown(directionsHtml.read())
|
17 |
+
with gr.Row():
|
18 |
+
modelSelect = gr.Dropdown(
|
19 |
+
[
|
20 |
+
["FM Radio Super Resolution","FM_Radio_SR.th"],
|
21 |
+
["AM Radio Super Resolution (Beta v2)","AM_Radio_SR.th"],
|
22 |
+
["Telephone Super Resolution (Beta)","Telephone_SR.th"]
|
23 |
+
],
|
24 |
+
label="Select Model:",
|
25 |
+
value="FM_Radio_SR.th",
|
26 |
+
)
|
27 |
+
with gr.Row():
|
28 |
+
with gr.Column():
|
29 |
+
audioFileSelect = gr.Audio(label="Audio File (Mono or Stereo, Max 6 Minutes):",sources="upload", max_length=360)
|
30 |
+
with gr.Column():
|
31 |
+
audioOutput = gr.Audio(show_download_button=True, label="Restored Audio:", sources=[], max_length=360)
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
submit = gr.Button("Process Audio", variant="primary", interactive=False)
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Accordion("More Information:", open=False):
|
37 |
+
with open("html/information.html", "r") as informationHtml:
|
38 |
+
gr.Markdown(informationHtml.read())
|
39 |
+
|
40 |
+
@audioFileSelect.input(inputs=audioFileSelect, outputs=[submit, audioFileSelect])
|
41 |
+
def audioFileSelectChanged(audioData: gr.Audio):
|
42 |
+
#Audio exists and is mono or stereo
|
43 |
+
if audioData is None:
|
44 |
+
return gr.update(interactive=False), None
|
45 |
+
if len(audioData[1].shape) == 1:
|
46 |
+
return gr.update(interactive=True), audioData
|
47 |
+
if audioData[1].shape[1] > 2:
|
48 |
+
gr.Warning("Audio with more than 2 channels is not supported.")
|
49 |
+
return gr.update(interactive=False), None
|
50 |
+
return gr.update(interactive=True), audioData
|
51 |
+
|
52 |
+
|
53 |
+
@submit.click(inputs=[modelSelect, audioFileSelect], outputs=audioOutput)
|
54 |
+
def processAudio(model: gr.Dropdown, audioData: gr.Audio):
|
55 |
+
if audioData is None:
|
56 |
+
raise gr.Error("Load an audio file.")
|
57 |
+
return None
|
58 |
+
elif len(audioData[1].shape) == 1: #Convert mono to stereo
|
59 |
+
lrAudio = torch.tensor(np.array([
|
60 |
+
audioData[1].copy().astype(np.float32)/32768,
|
61 |
+
audioData[1].copy().astype(np.float32)/32768
|
62 |
+
]))
|
63 |
+
elif audioData[1].shape[1] > 2:
|
64 |
+
raise gr.Error("Audio with more than 2 channels is not supported.")
|
65 |
+
return None
|
66 |
+
else: #re-order channel data from [samples, 2] to [2, samples]
|
67 |
+
lrAudio = torch.tensor(audioData[1].copy().astype(np.float32)/32768).transpose(0,1)
|
68 |
+
if audioData[0] != 44100:
|
69 |
+
lrAudio = resample(lrAudio, audioData[0], 44100)
|
70 |
+
model_name, experiment_file = getModelInfo(model)
|
71 |
+
hrAudio=upscaleAudio(lrAudio, model, model_name=model_name, experiment_file=experiment_file)
|
72 |
+
hrAudio=hrAudio / max(hrAudio.abs().max().item(), 1)
|
73 |
+
outAudio=(hrAudio*32767).numpy().astype(np.int16).transpose(1,0)
|
74 |
+
return tuple([44100, outAudio])
|
75 |
+
|
76 |
+
def getModelInfo(modelFilename: str):
|
77 |
+
if(modelFilename == "FM_Radio_SR.th"):
|
78 |
+
return "aero", "aero_441-441_512_256.yaml"
|
79 |
+
if(modelFilename == "AM_Radio_SR.th"):
|
80 |
+
return "aero", "aero_441-441_512_256.yaml"
|
81 |
+
if(modelFilename == "Telephone_SR.th"):
|
82 |
+
return "aero", "aero_441-441_512_256.yaml"
|
83 |
+
return "aero", "aero_441-441_512_256.yaml"
|
84 |
+
|
85 |
layout.launch()
|