|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator |
|
from PIL import Image |
|
|
|
|
|
import os |
|
import urllib.request |
|
|
|
MODEL_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" |
|
MODEL_PATH = "sam_vit_b.pth" |
|
|
|
|
|
if not os.path.exists(MODEL_PATH): |
|
print("Model indiriliyor...") |
|
urllib.request.urlretrieve(MODEL_URL, MODEL_PATH) |
|
print("Model indirildi.") |
|
|
|
|
|
model_type = "vit_b" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
sam = sam_model_registry[model_type](checkpoint=MODEL_PATH) |
|
sam.to(device=device) |
|
|
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
def segment_all_objects(image): |
|
image_np = np.array(image) |
|
masks = mask_generator.generate(image_np) |
|
|
|
|
|
overlay = image_np.copy() |
|
for i, mask in enumerate(masks): |
|
m = mask["segmentation"] |
|
color = np.random.randint(0, 255, size=(3,)) |
|
overlay[m] = overlay[m] * 0.3 + color * 0.7 |
|
|
|
y, x = np.where(m) |
|
if len(x) > 0 and len(y) > 0: |
|
cx, cy = int(np.mean(x)), int(np.mean(y)) |
|
cv2.putText(overlay, f"Obj {i+1}", (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2) |
|
|
|
return Image.fromarray(overlay.astype(np.uint8)) |
|
|
|
gr.Interface( |
|
fn=segment_all_objects, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image() |
|
).launch() |
|
|