import gradio as gr import numpy as np import torch import cv2 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator from PIL import Image import os import urllib.request MODEL_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" MODEL_PATH = "sam_vit_b.pth" # Eğer model yoksa indir if not os.path.exists(MODEL_PATH): print("Model indiriliyor...") urllib.request.urlretrieve(MODEL_URL, MODEL_PATH) print("Model indirildi.") # Model yükle model_type = "vit_b" device = "cuda" if torch.cuda.is_available() else "cpu" sam = sam_model_registry[model_type](checkpoint=MODEL_PATH) sam.to(device=device) mask_generator = SamAutomaticMaskGenerator(sam) def segment_all_objects(image): image_np = np.array(image) masks = mask_generator.generate(image_np) # Maske üzerine çiz overlay = image_np.copy() for i, mask in enumerate(masks): m = mask["segmentation"] color = np.random.randint(0, 255, size=(3,)) overlay[m] = overlay[m] * 0.3 + color * 0.7 # Maske üstüne label yaz y, x = np.where(m) if len(x) > 0 and len(y) > 0: cx, cy = int(np.mean(x)), int(np.mean(y)) cv2.putText(overlay, f"Obj {i+1}", (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2) return Image.fromarray(overlay.astype(np.uint8)) gr.Interface( fn=segment_all_objects, inputs=gr.Image(type="pil"), outputs=gr.Image() ).launch()