File size: 8,014 Bytes
ece4a6d
 
 
 
 
1ec87d5
ece4a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7b9e5
 
ece4a6d
ee7b9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece4a6d
 
 
ee7b9e5
 
 
 
ece4a6d
ee7b9e5
 
 
 
 
 
 
 
ece4a6d
 
ee7b9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece4a6d
 
ee7b9e5
 
 
 
 
 
 
 
ece4a6d
ee7b9e5
 
 
 
ece4a6d
 
 
ee7b9e5
 
ece4a6d
ee7b9e5
ece4a6d
 
ee7b9e5
 
 
 
 
 
 
 
 
ece4a6d
ee7b9e5
 
ece4a6d
ee7b9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece4a6d
ee7b9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece4a6d
ee7b9e5
 
ece4a6d
 
ee7b9e5
ece4a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7b9e5
 
 
 
 
ece4a6d
ee7b9e5
 
 
 
 
ece4a6d
 
 
 
 
 
 
 
 
 
 
 
ee7b9e5
 
ece4a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7b9e5
ece4a6d
 
ee7b9e5
 
ece4a6d
 
ee7b9e5
ece4a6d
 
ee7b9e5
ece4a6d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import {
  SamModel,
  AutoProcessor,
  RawImage,
  Tensor,
} from "https://cdn.jsdelivr.net/npm/@huggingface/[email protected]";

// Reference the elements we will use
const statusLabel = document.getElementById("status");
const fileUpload = document.getElementById("upload");
const imageContainer = document.getElementById("container");
const example = document.getElementById("example");
const uploadButton = document.getElementById("upload-button");
const resetButton = document.getElementById("reset-image");
const clearButton = document.getElementById("clear-points");
const cutButton = document.getElementById("cut-mask");
const maskCanvas = document.getElementById("mask-output");
const maskContext = maskCanvas.getContext("2d");

const EXAMPLE_URL =
  "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/corgi.jpg";

// State variables
let isEncoding = false;
let imageInput = null;
let imageProcessed = null;
let imageEmbeddings = null;
let model = null;
let processor = null;

async function encode(url) {
  if (isEncoding) return;
  isEncoding = true;
  statusLabel.textContent = "Extracting image embedding...";

  imageInput = await RawImage.fromURL(url);

  // Update UI
  imageContainer.style.backgroundImage = `url(${url})`;
  uploadButton.style.display = "none";
  cutButton.disabled = true;

  // Recompute image embeddings
  imageProcessed = await processor(imageInput);
  imageEmbeddings = await model.get_image_embeddings(imageProcessed);

  statusLabel.textContent = "Embedding extracted!";
  isEncoding = false;

  // Otomatik segmentasyon için hemen çalıştır
  await autoSegment();
}

async function autoSegment() {
  if (!imageEmbeddings) {
    statusLabel.textContent = "No image embeddings available!";
    return;
  }

  statusLabel.textContent = "Generating automatic segments...";

  // Grid tabanlı noktalar oluştur (otomatik segmentasyon için)
  const gridSize = 50; // Grid boyutu (piksel cinsinden)
  const reshaped = imageProcessed.reshaped_input_sizes[0];
  let points = [];
  for (let y = gridSize / 2; y < imageInput.height; y += gridSize) {
    for (let x = gridSize / 2; x < imageInput.width; x += gridSize) {
      points.push([
        (x / imageInput.width) * reshaped[1],
        (y / imageInput.height) * reshaped[0],
      ]);
    }
  }

  // Maskeleri saklamak için dizi
  let masks = [];
  let scores = [];

  // Her grid noktası için segmentasyon yap
  for (let i = 0; i < points.length; i++) {
    const point = points[i];
    const input_points = new Tensor("float32", point, [1, 1, 1, 2]);
    const input_labels = new Tensor("int64", [1n], [1, 1, 1]);

    const { pred_masks, iou_scores } = await model({
      ...imageEmbeddings,
      input_points,
      input_labels,
    });

    const processedMasks = await processor.post_process_masks(
      pred_masks,
      imageProcessed.original_sizes,
      imageProcessed.reshaped_input_sizes,
    );

    masks.push(processedMasks[0][0]); // İlk maskeyi al
    scores.push(iou_scores.data);
  }

  // Maskeleri filtrele (çok küçük veya düşük skorlu maskeleri atla)
  const filteredMasks = [];
  const filteredScores = [];
  for (let i = 0; i < masks.length; i++) {
    const mask = masks[i];
    let pixelCount = 0;
    for (let j = 0; j < mask.data.length; j++) {
      if (mask.data[j] === 1) pixelCount++;
    }
    if (pixelCount > (imageInput.width * imageInput.height) / 100) {
      // %1'den büyük maskeler
      filteredMasks.push(mask);
      filteredScores.push(scores[i]);
    }
  }

  // Maskeleri ve etiketleri çiz
  updateMaskOverlay(filteredMasks, filteredScores);

  statusLabel.textContent = `Found ${filteredMasks.length} objects`;
}

function updateMaskOverlay(masks, scores) {
  // Canvas boyutlarını güncelle
  if (
    maskCanvas.width !== imageInput.width ||
    maskCanvas.height !== imageInput.height
  ) {
    maskCanvas.width = imageInput.width;
    maskCanvas.height = imageInput.height;
  }

  // Önce canvas'i temizle
  maskContext.clearRect(0, 0, maskCanvas.width, maskCanvas.height);

  // Her maskeyi çiz
  for (let m = 0; m < masks.length; m++) {
    const mask = masks[m];
    const imageData = maskContext.createImageData(
      maskCanvas.width,
      maskCanvas.height,
    );
    const pixelData = imageData.data;

    // En iyi maskeyi seç
    const numMasks = scores[m].length;
    let bestIndex = 0;
    for (let i = 1; i < numMasks; ++i) {
      if (scores[m][i] > scores[m][bestIndex]) {
        bestIndex = i;
      }
    }

    // Maskeyi renklendir
    const r = Math.random() * 255;
    const g = Math.random() * 255;
    const b = Math.random() * 255;
    for (let i = 0; i < pixelData.length; ++i) {
      if (mask.data[numMasks * i + bestIndex] === 1) {
        const offset = 4 * i;
        pixelData[offset] = r;
        pixelData[offset + 1] = g;
        pixelData[offset + 2] = b;
        pixelData[offset + 3] = 128; // Yarı saydam
      }
    }
    maskContext.putImageData(imageData, 0, 0);

    // Etiketi ekle
    let xIndices = [];
    let yIndices = [];
    for (let i = 0; i < mask.data.length; i++) {
      if (mask.data[numMasks * i + bestIndex] === 1) {
        const x = i % maskCanvas.width;
        const y = Math.floor(i / maskCanvas.width);
        xIndices.push(x);
        yIndices.push(y);
      }
    }
    if (xIndices.length > 0 && yIndices.length > 0) {
      const centerX = Math.floor(
        xIndices.reduce((a, b) => a + b, 0) / xIndices.length,
      );
      const centerY = Math.floor(
        yIndices.reduce((a, b) => a + b, 0) / yIndices.length,
      );
      maskContext.fillStyle = "white";
      maskContext.font = "16px Arial";
      maskContext.strokeStyle = "black";
      maskContext.lineWidth = 2;
      const label = `Object ${m + 1}`;
      maskContext.strokeText(label, centerX, centerY);
      maskContext.fillText(label, centerX, centerY);
    }
  }

  // Kesme butonunu etkinleştir
  cutButton.disabled = false;
}

// Mevcut event listener'ları koru, ama tıklama olaylarını kaldır
fileUpload.addEventListener("change", function (e) {
  const file = e.target.files[0];
  if (!file) return;

  const reader = new FileReader();
  reader.onload = (e2) => encode(e2.target.result);
  reader.readAsDataURL(file);
});

example.addEventListener("click", (e) => {
  e.preventDefault();
  encode(EXAMPLE_URL);
});

resetButton.addEventListener("click", () => {
  imageInput = null;
  imageProcessed = null;
  imageEmbeddings = null;
  isEncoding = false;

  maskContext.clearRect(0, 0, maskCanvas.width, maskCanvas.height);
  cutButton.disabled = true;
  imageContainer.style.backgroundImage = "none";
  uploadButton.style.display = "flex";
  statusLabel.textContent = "Ready";
});

cutButton.addEventListener("click", async () => {
  const [w, h] = [maskCanvas.width, maskCanvas.height];
  const maskImageData = maskContext.getImageData(0, 0, w, h);

  const cutCanvas = new OffscreenCanvas(w, h);
  const cutContext = cutCanvas.getContext("2d");

  const maskPixelData = maskImageData.data;
  const imagePixelData = imageInput.data;
  for (let i = 0; i < w * h; ++i) {
    const sourceOffset = 3 * i;
    const targetOffset = 4 * i;
    if (maskPixelData[targetOffset + 3] > 0) {
      for (let j = 0; j < 3; ++j) {
        maskPixelData[targetOffset + j] = imagePixelData[sourceOffset + j];
      }
    }
  }
  cutContext.putImageData(maskImageData, 0, 0);

  const link = document.createElement("a");
  link.download = "image.png";
  link.href = URL.createObjectURL(await cutCanvas.convertToBlob());
  link.click();
  link.remove();
});

// Modeli yükle
const model_id = "Xenova/slimsam-77-uniform";
statusLabel.textContent = "Loading model...";
model = await SamModel.from_pretrained(model_id, {
  dtype: "fp16",
  device: "webgpu",
});
processor = await AutoProcessor.from_pretrained(model_id);
statusLabel.textContent = "Ready";

// UI'yi etkinleştir
fileUpload.disabled = false;
uploadButton.style.opacity = 1;
example.style.pointerEvents = "auto";