Spaces:
Running
Running
File size: 8,014 Bytes
ece4a6d 1ec87d5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d ee7b9e5 ece4a6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import {
SamModel,
AutoProcessor,
RawImage,
Tensor,
} from "https://cdn.jsdelivr.net/npm/@huggingface/[email protected]";
// Reference the elements we will use
const statusLabel = document.getElementById("status");
const fileUpload = document.getElementById("upload");
const imageContainer = document.getElementById("container");
const example = document.getElementById("example");
const uploadButton = document.getElementById("upload-button");
const resetButton = document.getElementById("reset-image");
const clearButton = document.getElementById("clear-points");
const cutButton = document.getElementById("cut-mask");
const maskCanvas = document.getElementById("mask-output");
const maskContext = maskCanvas.getContext("2d");
const EXAMPLE_URL =
"https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/corgi.jpg";
// State variables
let isEncoding = false;
let imageInput = null;
let imageProcessed = null;
let imageEmbeddings = null;
let model = null;
let processor = null;
async function encode(url) {
if (isEncoding) return;
isEncoding = true;
statusLabel.textContent = "Extracting image embedding...";
imageInput = await RawImage.fromURL(url);
// Update UI
imageContainer.style.backgroundImage = `url(${url})`;
uploadButton.style.display = "none";
cutButton.disabled = true;
// Recompute image embeddings
imageProcessed = await processor(imageInput);
imageEmbeddings = await model.get_image_embeddings(imageProcessed);
statusLabel.textContent = "Embedding extracted!";
isEncoding = false;
// Otomatik segmentasyon için hemen çalıştır
await autoSegment();
}
async function autoSegment() {
if (!imageEmbeddings) {
statusLabel.textContent = "No image embeddings available!";
return;
}
statusLabel.textContent = "Generating automatic segments...";
// Grid tabanlı noktalar oluştur (otomatik segmentasyon için)
const gridSize = 50; // Grid boyutu (piksel cinsinden)
const reshaped = imageProcessed.reshaped_input_sizes[0];
let points = [];
for (let y = gridSize / 2; y < imageInput.height; y += gridSize) {
for (let x = gridSize / 2; x < imageInput.width; x += gridSize) {
points.push([
(x / imageInput.width) * reshaped[1],
(y / imageInput.height) * reshaped[0],
]);
}
}
// Maskeleri saklamak için dizi
let masks = [];
let scores = [];
// Her grid noktası için segmentasyon yap
for (let i = 0; i < points.length; i++) {
const point = points[i];
const input_points = new Tensor("float32", point, [1, 1, 1, 2]);
const input_labels = new Tensor("int64", [1n], [1, 1, 1]);
const { pred_masks, iou_scores } = await model({
...imageEmbeddings,
input_points,
input_labels,
});
const processedMasks = await processor.post_process_masks(
pred_masks,
imageProcessed.original_sizes,
imageProcessed.reshaped_input_sizes,
);
masks.push(processedMasks[0][0]); // İlk maskeyi al
scores.push(iou_scores.data);
}
// Maskeleri filtrele (çok küçük veya düşük skorlu maskeleri atla)
const filteredMasks = [];
const filteredScores = [];
for (let i = 0; i < masks.length; i++) {
const mask = masks[i];
let pixelCount = 0;
for (let j = 0; j < mask.data.length; j++) {
if (mask.data[j] === 1) pixelCount++;
}
if (pixelCount > (imageInput.width * imageInput.height) / 100) {
// %1'den büyük maskeler
filteredMasks.push(mask);
filteredScores.push(scores[i]);
}
}
// Maskeleri ve etiketleri çiz
updateMaskOverlay(filteredMasks, filteredScores);
statusLabel.textContent = `Found ${filteredMasks.length} objects`;
}
function updateMaskOverlay(masks, scores) {
// Canvas boyutlarını güncelle
if (
maskCanvas.width !== imageInput.width ||
maskCanvas.height !== imageInput.height
) {
maskCanvas.width = imageInput.width;
maskCanvas.height = imageInput.height;
}
// Önce canvas'i temizle
maskContext.clearRect(0, 0, maskCanvas.width, maskCanvas.height);
// Her maskeyi çiz
for (let m = 0; m < masks.length; m++) {
const mask = masks[m];
const imageData = maskContext.createImageData(
maskCanvas.width,
maskCanvas.height,
);
const pixelData = imageData.data;
// En iyi maskeyi seç
const numMasks = scores[m].length;
let bestIndex = 0;
for (let i = 1; i < numMasks; ++i) {
if (scores[m][i] > scores[m][bestIndex]) {
bestIndex = i;
}
}
// Maskeyi renklendir
const r = Math.random() * 255;
const g = Math.random() * 255;
const b = Math.random() * 255;
for (let i = 0; i < pixelData.length; ++i) {
if (mask.data[numMasks * i + bestIndex] === 1) {
const offset = 4 * i;
pixelData[offset] = r;
pixelData[offset + 1] = g;
pixelData[offset + 2] = b;
pixelData[offset + 3] = 128; // Yarı saydam
}
}
maskContext.putImageData(imageData, 0, 0);
// Etiketi ekle
let xIndices = [];
let yIndices = [];
for (let i = 0; i < mask.data.length; i++) {
if (mask.data[numMasks * i + bestIndex] === 1) {
const x = i % maskCanvas.width;
const y = Math.floor(i / maskCanvas.width);
xIndices.push(x);
yIndices.push(y);
}
}
if (xIndices.length > 0 && yIndices.length > 0) {
const centerX = Math.floor(
xIndices.reduce((a, b) => a + b, 0) / xIndices.length,
);
const centerY = Math.floor(
yIndices.reduce((a, b) => a + b, 0) / yIndices.length,
);
maskContext.fillStyle = "white";
maskContext.font = "16px Arial";
maskContext.strokeStyle = "black";
maskContext.lineWidth = 2;
const label = `Object ${m + 1}`;
maskContext.strokeText(label, centerX, centerY);
maskContext.fillText(label, centerX, centerY);
}
}
// Kesme butonunu etkinleştir
cutButton.disabled = false;
}
// Mevcut event listener'ları koru, ama tıklama olaylarını kaldır
fileUpload.addEventListener("change", function (e) {
const file = e.target.files[0];
if (!file) return;
const reader = new FileReader();
reader.onload = (e2) => encode(e2.target.result);
reader.readAsDataURL(file);
});
example.addEventListener("click", (e) => {
e.preventDefault();
encode(EXAMPLE_URL);
});
resetButton.addEventListener("click", () => {
imageInput = null;
imageProcessed = null;
imageEmbeddings = null;
isEncoding = false;
maskContext.clearRect(0, 0, maskCanvas.width, maskCanvas.height);
cutButton.disabled = true;
imageContainer.style.backgroundImage = "none";
uploadButton.style.display = "flex";
statusLabel.textContent = "Ready";
});
cutButton.addEventListener("click", async () => {
const [w, h] = [maskCanvas.width, maskCanvas.height];
const maskImageData = maskContext.getImageData(0, 0, w, h);
const cutCanvas = new OffscreenCanvas(w, h);
const cutContext = cutCanvas.getContext("2d");
const maskPixelData = maskImageData.data;
const imagePixelData = imageInput.data;
for (let i = 0; i < w * h; ++i) {
const sourceOffset = 3 * i;
const targetOffset = 4 * i;
if (maskPixelData[targetOffset + 3] > 0) {
for (let j = 0; j < 3; ++j) {
maskPixelData[targetOffset + j] = imagePixelData[sourceOffset + j];
}
}
}
cutContext.putImageData(maskImageData, 0, 0);
const link = document.createElement("a");
link.download = "image.png";
link.href = URL.createObjectURL(await cutCanvas.convertToBlob());
link.click();
link.remove();
});
// Modeli yükle
const model_id = "Xenova/slimsam-77-uniform";
statusLabel.textContent = "Loading model...";
model = await SamModel.from_pretrained(model_id, {
dtype: "fp16",
device: "webgpu",
});
processor = await AutoProcessor.from_pretrained(model_id);
statusLabel.textContent = "Ready";
// UI'yi etkinleştir
fileUpload.disabled = false;
uploadButton.style.opacity = 1;
example.style.pointerEvents = "auto"; |