# Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("image-classification", model="google/efficientnet-b0") # import streamlit as st # from transformers import pipeline # from PIL import Image # MODEL_1 = "google/vit-base-patch16-224" # MIN_ACEPTABLE_SCORE = 0.1 # MAX_N_LABELS = 5 # MODEL_2 = "nateraw/vit-age-classifier" # MODELS = [ # "google/efficientnet-b0", # "google/vit-base-patch16-224", #Classifição geral # "nateraw/vit-age-classifier", #Classifição de idade # "microsoft/resnet-50", #Classifição geral # "Falconsai/nsfw_image_detection", #Classifição NSFW # "cafeai/cafe_aesthetic", #Classifição de estética # "microsoft/resnet-18", #Classifição geral # "microsoft/resnet-34", #Classifição geral escolhida pelo copilot # "microsoft/resnet-101", #Classifição geral escolhida pelo copilot # "microsoft/resnet-152", #Classifição geral escolhida pelo copilot # "microsoft/swin-tiny-patch4-window7-224",#Classifição geral # "-- Reinstated on testing--", # "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral # "-- New --", # "-- Still in the testing process --", # "facebook/convnext-large-224", #Classifição geral # "timm/resnet50.a1_in1k", #Classifição geral # "timm/mobilenetv3_large_100.ra_in1k", #Classifição geral # "trpakov/vit-face-expression", #Classifição de expressão facial # "rizvandwiki/gender-classification", #Classifição de gênero # "#q-future/one-align", #Classifição geral # "LukeJacob2023/nsfw-image-detector", #Classifição NSFW # "vit-base-patch16-224-in21k", #Classifição geral # "not-lain/deepfake", #Classifição deepfake # "carbon225/vit-base-patch16-224-hentai", #Classifição hentai # "facebook/convnext-base-224-22k-1k", #Classifição geral # "facebook/convnext-large-224", #Classifição geral # "facebook/convnext-tiny-224",#Classifição geral # "nvidia/mit-b0", #Classifição geral # "microsoft/resnet-18", #Classifição geral # "microsoft/swinv2-base-patch4-window16-256", #Classifição geral # "andupets/real-estate-image-classification", #Classifição de imóveis # "timm/tf_efficientnetv2_s.in21k", #Classifição geral # "timm/convnext_tiny.fb_in22k", # "DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana # "FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral # "aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas # "RickyIG/emotion_face_image_classification", #Classifição de emoções # "shadowlilac/aesthetic-shadow" #Classifição de estética # ] # def classify(image, model): # classifier = pipeline("image-classification", model=model) # result= classifier(image) # return result # def save_result(result): # st.write("In the future, this function will save the result in a database.") # def print_result(result): # comulative_discarded_score = 0 # for i in range(len(result)): # if result[i]['score'] < MIN_ACEPTABLE_SCORE: # comulative_discarded_score += result[i]['score'] # else: # st.write(result[i]['label']) # st.progress(result[i]['score']) # st.write(result[i]['score']) # st.write(f"comulative_discarded_score:") # st.progress(comulative_discarded_score) # st.write(comulative_discarded_score) # def main(): # st.title("Image Classification") # st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.") # st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.") # st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!") # # Buy me a Coffee Setup # bmc_link = "https://www.buymeacoffee.com/nuno.tome" # # image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL # image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL # image_size = "150px" # Image size # #image_link_markdown = f"" # image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})" # #image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})" # Create a clickable image link # st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link # # Buy me a Coffee Setup # #st.markdown("", unsafe_allow_html=True) # input_image = st.file_uploader("Upload Image") # shosen_model = st.selectbox("Select the model to use", MODELS) # if input_image is not None: # image_to_classify = Image.open(input_image) # st.image(image_to_classify, caption="Uploaded Image") # if st.button("Classify"): # image_to_classify = Image.open(input_image) # classification_obj1 =[] # #avable_models = st.selectbox # classification_result = classify(image_to_classify, shosen_model) # classification_obj1.append(classification_result) # print_result(classification_result) # save_result(classification_result) # if __name__ == "__main__": # main()