# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("image-classification", model="google/efficientnet-b0")
# import streamlit as st
# from transformers import pipeline
# from PIL import Image
# MODEL_1 = "google/vit-base-patch16-224"
# MIN_ACEPTABLE_SCORE = 0.1
# MAX_N_LABELS = 5
# MODEL_2 = "nateraw/vit-age-classifier"
# MODELS = [
# "google/efficientnet-b0",
# "google/vit-base-patch16-224", #Classifição geral
# "nateraw/vit-age-classifier", #Classifição de idade
# "microsoft/resnet-50", #Classifição geral
# "Falconsai/nsfw_image_detection", #Classifição NSFW
# "cafeai/cafe_aesthetic", #Classifição de estética
# "microsoft/resnet-18", #Classifição geral
# "microsoft/resnet-34", #Classifição geral escolhida pelo copilot
# "microsoft/resnet-101", #Classifição geral escolhida pelo copilot
# "microsoft/resnet-152", #Classifição geral escolhida pelo copilot
# "microsoft/swin-tiny-patch4-window7-224",#Classifição geral
# "-- Reinstated on testing--",
# "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral
# "-- New --",
# "-- Still in the testing process --",
# "facebook/convnext-large-224", #Classifição geral
# "timm/resnet50.a1_in1k", #Classifição geral
# "timm/mobilenetv3_large_100.ra_in1k", #Classifição geral
# "trpakov/vit-face-expression", #Classifição de expressão facial
# "rizvandwiki/gender-classification", #Classifição de gênero
# "#q-future/one-align", #Classifição geral
# "LukeJacob2023/nsfw-image-detector", #Classifição NSFW
# "vit-base-patch16-224-in21k", #Classifição geral
# "not-lain/deepfake", #Classifição deepfake
# "carbon225/vit-base-patch16-224-hentai", #Classifição hentai
# "facebook/convnext-base-224-22k-1k", #Classifição geral
# "facebook/convnext-large-224", #Classifição geral
# "facebook/convnext-tiny-224",#Classifição geral
# "nvidia/mit-b0", #Classifição geral
# "microsoft/resnet-18", #Classifição geral
# "microsoft/swinv2-base-patch4-window16-256", #Classifição geral
# "andupets/real-estate-image-classification", #Classifição de imóveis
# "timm/tf_efficientnetv2_s.in21k", #Classifição geral
# "timm/convnext_tiny.fb_in22k",
# "DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana
# "FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral
# "aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas
# "RickyIG/emotion_face_image_classification", #Classifição de emoções
# "shadowlilac/aesthetic-shadow" #Classifição de estética
# ]
# def classify(image, model):
# classifier = pipeline("image-classification", model=model)
# result= classifier(image)
# return result
# def save_result(result):
# st.write("In the future, this function will save the result in a database.")
# def print_result(result):
# comulative_discarded_score = 0
# for i in range(len(result)):
# if result[i]['score'] < MIN_ACEPTABLE_SCORE:
# comulative_discarded_score += result[i]['score']
# else:
# st.write(result[i]['label'])
# st.progress(result[i]['score'])
# st.write(result[i]['score'])
# st.write(f"comulative_discarded_score:")
# st.progress(comulative_discarded_score)
# st.write(comulative_discarded_score)
# def main():
# st.title("Image Classification")
# st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.")
# st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.")
# st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!")
# # Buy me a Coffee Setup
# bmc_link = "https://www.buymeacoffee.com/nuno.tome"
# # image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL
# image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL
# image_size = "150px" # Image size
# #image_link_markdown = f""
# image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})"
# #image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})" # Create a clickable image link
# st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link
# # Buy me a Coffee Setup
# #st.markdown("", unsafe_allow_html=True)
# input_image = st.file_uploader("Upload Image")
# shosen_model = st.selectbox("Select the model to use", MODELS)
# if input_image is not None:
# image_to_classify = Image.open(input_image)
# st.image(image_to_classify, caption="Uploaded Image")
# if st.button("Classify"):
# image_to_classify = Image.open(input_image)
# classification_obj1 =[]
# #avable_models = st.selectbox
# classification_result = classify(image_to_classify, shosen_model)
# classification_obj1.append(classification_result)
# print_result(classification_result)
# save_result(classification_result)
# if __name__ == "__main__":
# main()