Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
-
import fitz
|
| 5 |
import docx
|
| 6 |
import openpyxl
|
| 7 |
import faiss
|
| 8 |
|
|
|
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
-
from langchain_community.llms import Groq
|
| 11 |
from langchain.vectorstores import FAISS
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.docstore.document import Document
|
| 14 |
-
from langchain.chains import RetrievalQA
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
model="llama3-8b-8192",
|
| 19 |
-
api_key=os.getenv("GROQ_API_KEY")
|
| 20 |
-
)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 24 |
|
| 25 |
# File readers
|
|
@@ -58,30 +54,52 @@ def process_file(uploaded_file):
|
|
| 58 |
else:
|
| 59 |
return "Unsupported file type."
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Streamlit App
|
| 62 |
st.set_page_config(page_title="DocuQuery AI", layout="centered")
|
| 63 |
st.title("π DocuQuery AI")
|
| 64 |
-
st.markdown("Upload a document
|
| 65 |
|
| 66 |
uploaded_file = st.file_uploader("Upload your document", type=["pdf", "docx", "xlsx"])
|
| 67 |
|
| 68 |
if uploaded_file:
|
| 69 |
st.success("β
File uploaded successfully.")
|
| 70 |
-
with st.spinner("
|
| 71 |
raw_text = process_file(uploaded_file)
|
| 72 |
|
| 73 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 74 |
docs = [Document(page_content=chunk) for chunk in splitter.split_text(raw_text)]
|
| 75 |
|
| 76 |
-
with st.spinner("
|
| 77 |
db = FAISS.from_documents(docs, embedding_model)
|
| 78 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
|
| 79 |
-
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
| 80 |
|
| 81 |
-
st.success("π Document indexed. Ask
|
| 82 |
|
| 83 |
user_query = st.text_input("β Ask something about the document:")
|
| 84 |
if user_query:
|
| 85 |
-
with st.spinner("Generating
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
+
import fitz
|
| 5 |
import docx
|
| 6 |
import openpyxl
|
| 7 |
import faiss
|
| 8 |
|
| 9 |
+
from groq import Groq
|
| 10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 11 |
from langchain.vectorstores import FAISS
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.docstore.document import Document
|
|
|
|
| 14 |
|
| 15 |
+
# Initialize Groq client
|
| 16 |
+
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Embedding model
|
| 19 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 20 |
|
| 21 |
# File readers
|
|
|
|
| 54 |
else:
|
| 55 |
return "Unsupported file type."
|
| 56 |
|
| 57 |
+
# Prompt builder
|
| 58 |
+
def build_prompt(context, question):
|
| 59 |
+
return f"""You are a helpful assistant. Answer the question based only on the context provided below.
|
| 60 |
+
|
| 61 |
+
Context:
|
| 62 |
+
{context}
|
| 63 |
+
|
| 64 |
+
Question:
|
| 65 |
+
{question}
|
| 66 |
+
|
| 67 |
+
Answer:"""
|
| 68 |
+
|
| 69 |
# Streamlit App
|
| 70 |
st.set_page_config(page_title="DocuQuery AI", layout="centered")
|
| 71 |
st.title("π DocuQuery AI")
|
| 72 |
+
st.markdown("Upload a document and ask questions about it using LLaMA-3 from Groq.")
|
| 73 |
|
| 74 |
uploaded_file = st.file_uploader("Upload your document", type=["pdf", "docx", "xlsx"])
|
| 75 |
|
| 76 |
if uploaded_file:
|
| 77 |
st.success("β
File uploaded successfully.")
|
| 78 |
+
with st.spinner("Processing file..."):
|
| 79 |
raw_text = process_file(uploaded_file)
|
| 80 |
|
| 81 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 82 |
docs = [Document(page_content=chunk) for chunk in splitter.split_text(raw_text)]
|
| 83 |
|
| 84 |
+
with st.spinner("Embedding & indexing..."):
|
| 85 |
db = FAISS.from_documents(docs, embedding_model)
|
| 86 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
|
|
|
|
| 87 |
|
| 88 |
+
st.success("π Document indexed. Ask a question!")
|
| 89 |
|
| 90 |
user_query = st.text_input("β Ask something about the document:")
|
| 91 |
if user_query:
|
| 92 |
+
with st.spinner("Generating response..."):
|
| 93 |
+
retrieved_docs = retriever.get_relevant_documents(user_query)
|
| 94 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
| 95 |
+
|
| 96 |
+
prompt = build_prompt(context, user_query)
|
| 97 |
+
|
| 98 |
+
response = groq_client.chat.completions.create(
|
| 99 |
+
model="llama3-8b-8192",
|
| 100 |
+
messages=[
|
| 101 |
+
{"role": "user", "content": prompt}
|
| 102 |
+
]
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
st.markdown(f"**π¬ Answer:** {response.choices[0].message.content}")
|